4,416 research outputs found
Development of a flight test maneuver autopilot for an F-15 aircraft
An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. This paper presents the development of control laws for a flight test maneuver autopilot for an F-15 aircraft. A linear quadratic regulator approach is used to develop the control laws within the context of flight test maneuver requirements by treating the maneuver as a finite time tracking problem with regulation of state rates. Results are presented to show the effectiveness of the controller in insuring acceptable aircraft performance during a maneuver
Development of control laws for a flight test maneuver autopilot for an F-15 aircraft
An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver
Scale-free statistics of neuronal assemblies predict learning performance
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Spin analog of the controlled Josephson charge current
We propose a controlled Josephson spin current across the junction of two
non-centrosymmetric superconductors like CePt_3Si. The Josephson spin current
arises due to direction dependent tunneling matrix element and different
momentum dependent phases of the triplet components of the gap function. Its
modulation with the angle \xi between the noncentrosymmetric axes of two
superconductors is proportional to \sin \xi. This particular dependence on \xi
may find application of the proposed set-up in making a Josephson spin switch.Comment: 4 pages, 1 figure; title is changed; article is rewritte
Giant Electroresistance in Ferroelectric Tunnel Junctions
The interplay between the electron transport in metal/ferroelectric/metal
junctions with ultrathin ferroelectric barriers and the polarization state of a
barrier is investigated. Using a model which takes into account screening of
polarization charges in metallic electrodes and direct quantum tunneling across
a ferroelectric barrier we calculate the change in the tunneling conductance
associated with the polarization switching. We find the conductance change of a
few orders of magnitude for metallic electrodes with significantly different
screening lengths. This giant electroresistance effect is the consequence of a
different potential profile seen by transport electrons for the two opposite
polarization orientations.Comment: 4 page
Systems, interactions and macrotheory
A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI
Gel-Electrophoresis and Diffusion of Ring-Shaped DNA
A model for the motion of ring-shaped DNA in a gel is introduced and studied
by numerical simulations and a mean-field approximation. The ring motion is
mediated by finger-shaped loops (hernias) that move in an amoeba-like fashion
around the gel obstructions. This constitutes an extension of previous
reptation tube treatments. It is shown that tension is essential for describing
the dynamics in the presence of hernias. It is included in the model as long
range interactions over stretched DNA regions. The mobility of ring-shaped DNA
is found to saturate much as in the well-studied case of linear DNA.
Experiments in polymer gels, however, show that the mobility drops
exponentially with the DNA ring size. This is commonly attributed to
dangling-ends in the gel that can impale the ring. The predictions of the
present model are expected to apply to artificial 2D obstacle arrays (W.D.
Volkmuth, R.H. Austin, Nature 358,600 (1992)) which have no dangling-ends. In
the zero-field case an exact solution of the model steady-state is obtained,
and quantities such as the average ring size are calculated. An approximate
treatment of the ring dynamics is given, and the diffusion coefficient is
derived. The model is also discussed in the context of spontaneous symmetry
breaking in one dimension.Comment: 8 figures, LaTeX, Phys. Rev. E - in pres
Formal Specification and Testing of a Management Architecture
The importance of network and distributed systems management to supply and maintain services required by users has led to a demand for management facilities. Open network management is assisted by representing the system resources to be managed as objects, and providing standard services and protocols for interrogating and manipulating these objects. This paper examines the application of formal description techniques to the specification of managed objects by presenting a case study in the specification and testing of a management architecture. We describe a formal specification of a management architecture suitable for scheduling and distributing services across nodes in a distributed system. In addition, we show how formal specifications can be used to generate conformance tests for the management architecture
Diffusion in a generalized Rubinstein-Duke model of electrophoresis with kinematic disorder
Using a generalized Rubinstein-Duke model we prove rigorously that kinematic
disorder leaves the prediction of standard reptation theory for the scaling of
the diffusion constant in the limit for long polymer chains
unaffected. Based on an analytical calculation as well as Monte Carlo
simulations we predict kinematic disorder to affect the center of mass
diffusion constant of an entangled polymer in the limit for long chains by the
same factor as single particle diffusion in a random barrier model.Comment: 29 pages, 3 figures, submitted to PR
Study of arc-jet propulsion devices Final report, 20 Nov. 1964 - 19 Dec. 1965
Energy transfer mechanisms in radiation, water, and regeneratively cooled, and MPD arc jet propulsion device
- …