83 research outputs found

    Modelling Animal Systems Paper: Update of the Dutch protein evaluation system for ruminants: the DVE/OEB2010 system

    Get PDF
    In the current Dutch protein evaluation system (the DVE/OEB1991 system), two characteristics are calculated for each feed: true protein digested in the intestine (DVE) and the rumen degradable protein balance (OEB). Of these, DVE represents the protein value of a feed, while OEB is the difference between the potential microbial protein synthesis (MPS) on the basis of available rumen degradable protein and that on the basis of available rumen degradable energy. DVE can be separated into three components: (i) feed crude protein undegraded in the rumen but digested in the small intestine, (ii) microbial true protein synthesized in the rumen and digested in the small intestine, and (iii) endogenous protein lost in the digestive processes. Based on new research findings, the DVE/OEB1991 system has recently been updated to the DVE/OEB2010 system. More detail and differentiation is included concerning the representation of chemical components in feed, the rumen degradation characteristics of these components, the efficiency of MPS and the fractional passage rates. For each chemical component, the soluble, washout, potentially degradable and truly non-degradable fractions are defined with separate fractional degradation rates. Similarly, fractional passage rates for each of these fractions were identified and partly expressed as a function of fractional degradation rate. Efficiency of MPS is related to the various fractions of the chemical components and their associated fractional passage rates. Only minor changes were made with respect to the amount of DVE required for maintenance and production purposes of the animal. Differences from other current protein evaluation systems, viz. the Cornell Net Carbohydrate and Protein system and the Feed into Milk system, are discussed

    Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement

    Full text link
    [EN] The objectives of this paper are: 1) to give an overview of the development of methods for measuring emission rates from naturally ventilated livestock buildings over the last decade, 2) to identify and evaluate strengths and weaknesses, 3) to summarise and conclude the current state-of-art of available measurement concepts and their perspectives for improvement. The methods reviewed include determination of concentration and air exchange rate separately, tracer gas ratio, passive flux samplers, flux chambers, and combined downwind measurement and dispersion modelling. It is concluded that passive flux samplers, flux chambers and combined measurement and dispersion modelling are useful, but for limited fields of application only and require further development and validation against reference methods. The most robust method to investigate emission rates available at this stage is the tracer gas ratio method, but improvements are required. They include more detailed estimates of CO2 release rates (when using CO2 as a tracer) and research into optimising dosing performance of tracer gas release systems. The reliability of tracer gas ratio methods applied in buildings with large ventilation openings needs to be improved by a more profound understanding of tracer-pollutant ratios and their spatial variability, and the development of improved sampling methods for concentration ratios. There is a need for a field reference method against which other methods can be evaluated. None of the diicussed measurement methods can be marked as a solid reference for all conditions; tracer gas ratio methods are the most likely candidate but need further improvement. (C) 2012 IAgrE. Published by Elsevier Ltd. All rights reserved.The contribution to this paper of N. Ogink and J. Mosquera was financially supported by the Netherlands Ministry of Infrastructure and Environment.Ogink, NWM.; Mosquera, J.; Calvet Sanz, S.; Zhang, G. (2013). Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement. Biosystems Engineering. 116(3):297-308. https://doi.org/10.1016/j.biosystemseng.2012.10.005S297308116

    T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex

    Get PDF
    Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iTreg) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iTreg TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition

    Simultaneous Detection of Circulating Autoreactive CD8+ T-Cells Specific for Different Islet Cell–Associated Epitopes Using Combinatorial MHC Multimers

    Get PDF
    textabstractOBJECTIVE - Type 1 diabetes results from selective T-cell-mediated destruction of the insulin-producing β-cells in the pancreas. In this process, islet epitope-specific CD8+T-cells play a pivotal role. Thus, monitoring of multiple islet-specific CD8+T-cells may prove to be valuable for measuring disease activity, progression, and intervention. Yet, conventional detection techniques (ELISPOT and HLA tetramers) require many cells and are relatively insensitive. RESEARCH DESIGN AND METHODS - Here, we used a combinatorial quantum dot major histocompatibility complex multimer technique to simultaneously monitor the presence of HLA-A2 restricted insulin B10-18, prepro-insulin (PPI)15-24, islet antigen (IA)-2797-805, GAD65114-123, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)265-273, and pre-pro islet amyloid polypeptide (ppIAPP)5-13-specific CD8+T-cells in recent-onset diabetic patients, their siblings, healthy control subjects, and islet cell transplantation recipients. RESULTS - Using this kit, islet autoreactive CD8+T-cells recognizing insulin B10-18, IA-2797-805, and IGRP265-273were shown to be frequently detectable in recent-onset diabetic patients but rarely in healthy control subjects; PPI15-24proved to be the most sensitive epitope. Applying the "Diab-Q-kit" to samples of islet cell transplantation recipients allowed detection of changes of autoreactive T-cell frequencies against multiple islet cell-derived epitopes that were associated with disease activity and correlated with clinical outcome. CONCLUSIONS - A kit was developed that allows simultaneous detection of CD8+T-cells reactive to multiple HLA-A2-restricted β-cell epitopes requiring limited amounts of blood, without a need for in vitro culture, that is applicable on stored blood samples

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging

    Cellular Islet Autoimmunity Associates with Clinical Outcome of Islet Cell Transplantation

    Get PDF
    Islet cell transplantation can cure type 1 diabetes (T1D), but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG) induction and tacrolimus plus mycophenolate mofetil (MMF) maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively) and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively). Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression.Clinicaltrials.gov NCT00623610

    The role of condensed tannins in ruminant animal production: advances, limitations and future directions

    Full text link
    corecore