2,820 research outputs found
Current research into brain barriers and the delivery of therapeutics for neurological diseases: a report on CNS barrier congress London, UK, 2017.
This is a report on the CNS barrier congress held in London, UK, March 22-23rd 2017 and sponsored by Kisaco Research Ltd. The two 1-day sessions were chaired by John Greenwood and Margareta Hammarlund-Udenaes, respectively, and each session ended with a discussion led by the chair. Speakers consisted of invited academic researchers studying the brain barriers in relation to neurological diseases and industry researchers studying new methods to deliver therapeutics to treat neurological diseases. We include here brief reports from the speakers
Pigment epithelium-derived factor inhibits retinal microvascular dysfunction induced by 12/15-lipoxygenase-derived eicosanoids
We recently demonstrated that 12/15-lipoxygenase (LOX) derived metabolites, hydroxyeicosatetraenoic acids (HETEs), contribute to diabetic retinopathy (DR) via NADPH oxidase (NOX) and disruption of the balance in retinal levels of the vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Here, we test whether PEDF ameliorates retinal vascular injury induced by HETEs and the underlying mechanisms. Furthermore, we pursue the causal relationship between LOX–NOX system and regulation of PEDF expression during DR. For these purposes, we used an experimental eye model in which normal mice were injected intravitreally with 12-HETE with/without PEDF. Thereafter, fluorescein angiography (FA) was used to evaluate the vascular leakage, followed by optical coherence tomography (OCT) to assess the presence of angiogenesis. FA and OCT reported an increased vascular leakage and pre-retinal neovascularization, respectively, in response to 12-HETE that were not observed in the PEDF-treated group. Moreover, PEDF significantly attenuated the increased levels of vascular cell and intercellular adhesion molecules, VCAM-1 and ICAM-1, elicited by 12-HETE injection. Accordingly, the direct relationship between HETEs and PEDF has been explored through in-vitro studies using Müller cells (rMCs) and human retinal endothelial cells (HRECs). The results showed that 12- and 15-HETEs triggered the secretion of TNF-α and IL-6, as well as activation of NFκB in rMCs and significantly increased permeability and reduced zonula occludens protein-1 (ZO-1) immunoreactivity in HRECs. All these effects were prevented in PEDF-treated cells. Furthermore, interest in PEDF regulation during DR has been expanded to include NOX system. Retinal PEDF was significantly restored in diabetic mice treated with NOX inhibitor, apocynin, or lacking NOX2 up to 80% of the control level. Collectively, our findings suggest that interfering with LOX–NOX signaling opens up a new direction for treating DR by restoring endogenous PEDF that carries out multilevel vascular protective functions.National Eye Institute 5R01EY023315-02, Qatar National Research Fund NPRP 4-1046-3-284, and Vision Discovery Institute (MA), Mr. and Mrs. Richards travel award (ASI)
Microfluidic and Nanofluidic Cavities for Quantum Fluids Experiments
The union of quantum fluids research with nanoscience is rich with
opportunities for new physics. The relevant length scales in quantum fluids,
3He in particular, are comparable to those possible using microfluidic and
nanofluidic devices. In this article, we will briefly review how the physics of
quantum fluids depends strongly on confinement on the microscale and nanoscale.
Then we present devices fabricated specifically for quantum fluids research,
with cavity sizes ranging from 30 nm to 11 microns deep, and the
characterization of these devices for low temperature quantum fluids
experiments.Comment: 12 pages, 3 figures, Accepted to Journal of Low Temperature Physic
Long-lived neutral-kaon flux measurement for the KOTO experiment
The KOTO ( at Tokai) experiment aims to observe the CP-violating rare
decay by using a long-lived neutral-kaon
beam produced by the 30 GeV proton beam at the Japan Proton Accelerator
Research Complex. The flux is an essential parameter for the measurement
of the branching fraction. Three neutral decay modes, , , and were used to
measure the flux in the beam line in the 2013 KOTO engineering run. A
Monte Carlo simulation was used to estimate the detector acceptance for these
decays. Agreement was found between the simulation model and the experimental
data, and the remaining systematic uncertainty was estimated at the 1.4\%
level. The flux was measured as per protons on a
66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and
Experimental Physic
- …