168 research outputs found

    Aegean Frescoes and Their Correlating Myths

    Get PDF
    The interpretation of frescoes at an archaeological site can provide significant information on the function of the room in which they’re located, as well as provide insight into the past culture and its relation to other successive cultures. Through two case studies, Dr. Mazow and I compared written and visual expressions of Greek myths to scenes painted on the walls at two different Bronze Age Aegean sites. Based on our research we have found strong parallels between these frescoes and their depictions in later Greek myths. In the first example, we suggest the two women facing each other reflects the myth of the weaving contest between Athena and Arachne. For the second example, we suggest it depicts the story of Demeter and the descent of Persephone. Showing that these myths may have an earlier visual expression that predates their written record provides insight into how images were used in communication, a connection between Bronze age cultures and Classical Antiquity, and further enhances our identification of room and building function

    Mathematical Model for Calculating Mass Transfer in the Diffusion Layer

    Get PDF

    Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse

    Get PDF
    A terahertz half-cycle pulse was used to retrieve information stored as quantum phase in an NN-state Rydberg atom data register. The register was prepared as a wave packet with one state phase-reversed from the others (the "marked bit"). A half-cycle pulse then drove a significant portion of the electron probability into the flipped state via multimode interference.Comment: accepted by PR

    The Lantern Vol. 46, No. 2, April 1980

    Get PDF
    • The Voyage to Man\u27s Destiny • If I Could Keep the Times • Barstool Blues • I Didn\u27t Know • Felonious, Friend • Cool Ride • Georgia • Let Us Eat and Drink • In a Field • New Born Foal • Union to Freedom • In the Woods • Anthropomorphism • Runner • C.C. • Lake Attempt • A Fuzzy Blue Line • Trust Me • Haven\u27t We Met Before? • Rationality • Expecting Me • Short Storyhttps://digitalcommons.ursinus.edu/lantern/1116/thumbnail.jp

    Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda

    Get PDF
    Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Identification of the Proliferation/Differentiation Switch in the Cellular Network of Multicellular Organisms

    Get PDF
    The protein–protein interaction networks, or interactome networks, have been shown to have dynamic modular structures, yet the functional connections between and among the modules are less well understood. Here, using a new pipeline to integrate the interactome and the transcriptome, we identified a pair of transcriptionally anticorrelated modules, each consisting of hundreds of genes in multicellular interactome networks across different individuals and populations. The two modules are associated with cellular proliferation and differentiation, respectively. The proliferation module is conserved among eukaryotic organisms, whereas the differentiation module is specific to multicellular organisms. Upon differentiation of various tissues and cell lines from different organisms, the expression of the proliferation module is more uniformly suppressed, while the differentiation module is upregulated in a tissue- and species-specific manner. Our results indicate that even at the tissue and organism levels, proliferation and differentiation modules may correspond to two alternative states of the molecular network and may reflect a universal symbiotic relationship in a multicellular organism. Our analyses further predict that the proteins mediating the interactions between these modules may serve as modulators at the proliferation/differentiation switch
    • …
    corecore