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Abstract

Objective—Perform whole exome sequencing in 928 Hispanic children and identify variants and 

genes associated with childhood obesity.

Methods—Single nucleotide variants were identified from Illumina whole exome sequencing 

data using integrated read mapping, variant calling and annotation pipeline (Mercury). Association 

analyses of 74 obesity related traits and exonic variants were performed using SeqMeta software. 

Rare autosomal variants were analyzed using gene-based association analyses, and common 

autosomal variants were analyzed at single nucleotide variant (SNV) level.

Results—1) Identified rare exonic variants in 10 genes and 16 common SNVs in 11 genes that 

were associated with obesity traits in a cohort of Hispanic children 2) Discovered novel rare 

variants in peroxisome biogenesis factor 1 (PEX1) associated with several obesity traits (weight, 

weight z-score, BMI, BMI z-score, waist circumference, fat mass, trunk fat mass), and 3) 

Replicated previously reported SNVs associated with childhood obesity.

Conclusions—Convergence of whole exome sequencing, a family-based design, and extensive 

phenotyping discovered novel rare and common variants associated with childhood obesity. 

Linking PEX1 to obesity phenotypes poses a novel mechanism of peroxisomal biogenesis and 

metabolism underlying the development of childhood obesity.
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Introduction

Obesity has reached epidemic proportions in the US Hispanic population. The prevalence of 

obesity in Hispanics has doubled in the past 20 years with 42.5% of adults and 22.4% of 

children classified with obesity, increasing their risks for cardiometabolic diseases (1). The 

genetic influence on the transmission of obesity and its comorbidities is indisputable. 

Quantitative genetic analyses of body mass index (BMI), adiposity and related traits indicate 

heritability on the order of 0.4–0.7 (2). Genome-wide linkage and genome-wide association 

studies (GWAS) have identified a number of putative chromosomal regions and loci, 

however, they account for a small fraction and even jointly only a modest proportion of the 

familial risk. A recent GWAS meta-analysis of BMI in 339,224 adults identified 97 loci that 

accounted for about 2.7% of the BMI variation (3). Most GWAS focus on polymorphic 

variants with relatively high frequency; however, data are rapidly accumulating that rare 

variants have a large cumulative effect on normal phenotypic variation and are extremely 

important to complex diseases (4). Fewer GWAS have been conducted on childhood obesity 

(5–9). Although novel variants were identified, major common variants related to obesity 

overlapped to a substantial degree between children and adults. GWAS results explained 

only a few percent of the apparent genetic variance contributing to childhood obesity, as 

found in adult obesity. Furthermore, most variants found in GWAS are in the intronic or 

intergenic regions, making it difficult to elucidate the underlying mechanisms of obesity.

Thus, in this study, we aimed to explore the contribution of rare and common exonic variants 

to childhood obesity. Whole exome and whole genome sequencing are revealing the 

enormous extent of rare variation, much of which is unique to that individual’s family (4). 

Major contributors to inherited disease susceptibility are likely to be alleles that arose 

recently in extended pedigrees (10). Purifying natural selection eliminates highly deleterious 

variants before they reach high frequency, therefore disease risk alleles with large effects 

should be enriched at lower frequencies (11).

The VIVA LA FAMILIA (VIVA) cohort was established to identify genetic variants 

influencing childhood obesity in the Hispanic population. Our formalized quantitative 

genetic analyses found the heritability of BMI and obesity-related traits to be significant (1). 

GWA approaches used in VIVA (6) identified specific variants related to childhood obesity; 

however, they did not nearly account for its high heritability indicating that a relatively large 

number of variants remain to be discovered. Recent advances in DNA sequencing allow us 

to efficiently and effectively identify both common and rare coding variants and assess their 

impact on obesity and associated phenotypes (10). Stop-gain, stop-loss, and a subset of non-

synonymous coding variants are most likely to have direct functional consequences on 

disease susceptibility. In the VIVA study we take advantage of a family-based study design 

that will allow us to detect functional variants present at higher frequency among relatives 

than in the general population.
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The aims of this study were 1) to generate and annotate variants from whole exome 

sequencing data in 928 Hispanic children from the VIVA cohort; and 2) to perform statistical 

analyses to identify rare as well as common variants in exonic regions associated with 

childhood obesity.

Methods

VIVA study participants and phenotype measurements

VIVA cohort used for exome sequencing comprised 293 Hispanic families with an average 

family size of 5 persons (range 3 to 10) (1). All enrolled children and parents gave written 

informed consent or assent. The protocol was approved by the Institutional Review Boards 

for Human Subject Research for Baylor College of Medicine and Affiliated Hospitals and 

for Texas Biomedical Research Institute. Each family was ascertained on a proband with 

obesity between the ages 4–19 y. The VIVA cohort was highly enriched for obesity: the 

majority of the parents were either classified with overweight (34%) or obesity (57%) and 

52% of the children were classified as with obesity. Among the obese children, 62% were 

above the 99th BMI percentile, indicating severe obesity. Among these nuclear families, 

there were 32 extended family groupings, resulting in a large number of sib-pairs and first-

degree cousins (1457 related-pairs).

Phenotyping has been described in detail elsewhere (1, 6). Briefly, the phenotyping included 

standard anthropometry and body composition by dual energy x-ray absorptiometry (DXA); 

birth weights from Texas birth records; diet by 24-h recalls; total energy expenditure and 

substrate utilization by 24-h room calorimetry; physical activity by accelerometry; and 

fasting biochemistries analyzed by standard techniques.

Whole Exome Sequencing and genome variant identification

For each DNA sample, the entire exome was captured using the custom NimbleGen 

VCRome 2.1 capture reagent that targets coding exons from Consensus Coding Sequence 

(CCDS), NCBI RNA reference sequences (RefSeq) and Vega Human Genome Annotations. 

Capture enrichment was followed by sequencing on Illumina platform using previously 

described standard protocols (12). Illumina sequence analysis was performed using the 

Human Genome Sequencing Center’s integrated Mercury pipeline (13). Briefly, the 

sequencing reads were mapped to the GRCh37 human reference sequence using BWA. The 

Atlas suite was used to call single nucleotide variants (SNVs). Lastly, variant annotation was 

accomplished through the Cassandra annotation suite utilizing different databases to predict 

functional consequences of genomic variants and place the variants in a biological 

framework. Individual genotype, variant and sample level QC procedure was performed 

using a custom pipeline following the guidelines established for the CHARGE-S project 

(14). The QC procedure details are provided in the supplement.

Genotype-phenotype association analysis

Phenotypes were transformed using the inverse normalization procedure implemented in 

Sequential Oligogenic Linkage Analysis Routines (SOLAR)(15) and residualized using sex, 

age and age2 as covariates. For the birthweight phenotype, sex and gestational age were used 
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as covariates in the normalization/residualization procedure. Family relationships were 

reconstructed and verified using Primus (16) software utilizing the SNVs from exome 

sequencing data. Principal component analysis was conducted using PCAir method as 

implemented in the GENESIS package (17). Unlike standard PCA methods (e.g. Eigenstrat), 

the method implemented in PCAir accounts for relatedness of the individuals and identifies 

PCs that accurately capture population structure and are robust to familial relatives in the 

sample set.

Both single variant and gene-based association analyses were conducted for 74 phenotypes 

using SeqMeta (18) software. Only variants on autosomal chromosomes were analyzed in 

this study, and all analyses used additive genetic models. The empirical pedigree information 

was transformed into a kinship matrix using kinship2 software (19), and included in the 

association analysis following the method of Chen et al. (20) as implemented in SeqMeta 

software. First ten PCs were included as covariates in the association analysis. Single variant 

analysis included common variants with minor allele frequency (MAF) greater or equal to 

0.01. The significance level was calculated for each phenotype using Bonferroni correction, 

dividing the nominal significance level 0.05 by the number of SNV tests performed.

Analysis of exome data has potential to identify rare causal variants that are not genotyped 

in GWA studies. However, the low frequencies of rare variants will negatively impact the 

statistical power of an association test unless the sample size is very large. To ameliorate this 

problem several methods that test for the collective effect of a group of rare variants have 

been proposed, including burden and variance-component test. The burden tests (e.g. T1, T5 

and weighted-sum method) collapse information for multiple genetic variants into a single 

genetic score and test for association between this score and a trait. The Sequence Kernel 

Association Test (SKAT), on the other hand, aggregates score test statistics of individual 

variants in a SNV-set to compute p-values for a gene, and is robust when variants with both 

positive and negative effects are included.

Gene-based analysis included rare (MAF < 0.01), predicted protein-altering variants: stop-

gain, stop-loss, missense and splice site variants. The association analysis for gene-based 

tests was conducted using SKAT and weighted-sums burden tests (WST) using Madsen-

Browning weights (1/(MAF*(1−MAF))). The significance level for the gene based tests was 

calculated using Bonferroni correction, dividing the nominal significance level 0.05 by the 

number of gene tests performed. This included all genes that had at least two predicted 

protein-altering variants, multiplied by two to account for testing with both SKAT and WST.

Results

Whole exome sequencing - identified variants

For the whole exome sequencing of the 928 VIVA samples, the average coverage per sample 

across the targeted bases by the capture design was 130X, and on average 92% of the bases 

targeted had at least 20X read coverage. Genotype and variant level QC analyses removed 

12% of variants that did not pass our QC metrics. We removed two samples that did not pass 

the sample level QC metrics, and 10 samples that failed pedigree information verification. 

The final dataset comprised 283,587 SNVs identified in 916 samples. The dataset included 
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150,718 SNVs that have potential to affect the protein function, by either affecting a splice 

site (1,213 splice site variants), amino acid change (146,708 missense variants) or resulting 

in a stop gain (2,568) or stop loss (229). We identified 146,708 missense variants, of these, 

123,250 were rare (MAF <0.01) and 33,720 were predicted to be damaging by Polyphen2. A 

total of 31,136 missense mutations were considered rare and damaging. The frequency of 

SNVs shown in Table 1 is similar to patterns and rates observed in an independent cohort 

(21), and demonstrates that the number of variants most likely to affect protein function 

(nonsense and damaging missense) is enriched in singletons and doubletons as compared to 

more common variants (tripletons and more). The data has been submitted to dbGAP Study 

Accession phs000616.

Gene-based association analysis for rare variants (MAF < 0.01)

Gene level association analysis for rare (MAF < 0.01), potentially functional SNVs (stop-

gain, stop-loss, splicing and missense) was performed across the 74 phenotypes using WST 

and SKAT. The full list of phenotypes is provided in Table S1 (supplement). The p-value for 

significance was established at ≤ 1.72 × 10−6 based on the number of gene tests performed 

(29,110 tests: 14,555 genes, multiplied by two tests each). We evaluated all genes that had at 

least two functional, rare SNVs, and discovered 16 significant associations, three based on 

WST, and 13 based on SKAT (Table 2).

The strongest gene-based association discovered was for variants in adiponectin (ADIPOQ) 

for serum adiponectin levels (pskat = 2.1 × 10−11). The association was based on four rare 

predicted protein-altering variants (cumulative MAF = 0.009). We explored in more detail 

this gene-based finding by looking at the single variant level associations for each of the four 

underlying SNVs. The strongest single SNP association (p = 6.15 x10−11, effect size β = 

−2.7809) was for missense variant rs200573126 (p.Gly45Arg, MAF = 0.003). To investigate 

the contribution of other variants we removed rs200573126 from the analysis, and analyzed 

the remaining three variants by SKAT. The association was only nominally significant (P = 

0.02), indicating that the rs200573126 variant is driving the association.

We discovered significant association of variants in cystathionine gamma-lyase (CTH) with 

serum cystathionine levels (pskat = 2.12 × 10−7). The association was based on five rare 

predicted protein-altering variants (cumulative MAF = 0.01). We explored in more detail the 

gene-based finding by looking at the single variant level associations for each of the five 

underlying SNVs. Only one variant (rs28941785, p.Thr67Ile, MAF = 0.004,) passed the 

nominal significance value (P = 1.7 × 10−7, effect size β = 1.9769). Similarly to ADIPOQ, 

we removed rs28941785 variant, and the association based on remaining SNVs was not 

significant (P = 0.29), indicating that the rs28941785 variant is underlying the association.

We also discovered a significant association of peroxisome biogenesis factor 1 (PEX1) with 

seven different obesity-related phenotypes. The association was based on 17 rare predicted 

protein-altering variants (cumulative MAF = 0.022), with the strongest association with 

weight for age Z-score (pskat = 2.26 × 10−7), followed by trunk fat mass (pskat =6.55 × 

10−7), weight (pskat =6.59 × 10−7), and BMI (pskat = 1.14 × 10−6) (Figure 1). To further 

investigate the association of PEX1 and weight for age z-score we looked at the single 

variant level association results for each of the 17 rare, potentially functional variants. We 
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discovered that only one missense variant (rs141510219, pVal734Ile, MAF = 0.005) of the 

17 SNVs had nominally significant association (P = 8.97 × 10−8, effect size β = 1.8638) 

indicating that this single variant is responsible for driving the signal (Figure 2). After the 

removal of the rs141510219 variant, and reanalysis of the seven phenotypes using SKAT, 

none of the seven traits met the p-value significance threshold (p-values = 0.03 – 0.46), 

implicating the rs141510219 as the causal variant.

We discovered significant association (pskat = 4.23 × 10−7) of variants in suppressor of 

cytokine signaling 4 (SOCS4) with sleeping energy expenditure, as measured by 24-h room 

calorimetry. The association was based on two rare predicted protein-altering variants 

(cumulative MAF = 0.01). We looked at the single variant level associations for the two 

underlying SNVs. Only one variant (rs146421724, p.Gly54Ser, MAF = 0.0096) passed the 

nominal significance value (P = 3.59 × 10−7, effect size β = 1.4778). The complete list of 

significant gene-based findings, along with p-values, number of underlying SNVs and 

cumulative MAFs, are listed in Table 2.

Single variant association analysis for common variants (MAF ≥ 0.01)

We performed single variant association analysis for 54,360 common variants with MAF ≥ 

0.01 across the 74 phenotypes. Following Bonferroni correction, we established the p-value 

significance level at ≤ 9.2 × 10−7. We discovered 16 common SNV with significant 

association with at least one of the phenotypes (Table 3). We have successfully confirmed 

three findings from previous VIVA GWAS studies (6, 22, 23) and report several novel 

associations. We have replicated association of four variants in SLC2A9 with serum levels of 

uric acid, with the strongest association for missense variant rs16890979 (P = 6.1 × 10−13). 

We have replicated associations of missense SNV (rs12075) in DARC (P = 1.46 × 10−27), 

and missense SNV (rs58037016) in OR10J3 (P = 3.2 × 10−7) with levels of monocyte 

chemotactic protein 1 (MCP-1). We have also confirmed the association discovered in the 

VIVA GWAS study, of the missense SNV (rs3733402) in KLKB1 with levels of insulin-like 

growth factor 1 (P = 7.85 × 10−10). Important to note is that 87% of the samples were in 

common between the VIVA GWAS and this exome study, therefore KLKB1 association is a 

demonstration of consistency of results across different platforms, and not an independent 

replication.

We discovered eight novel associations. The strongest was association of a missense variant 

(rs1800234, MAF = 0.041) in PPAR-α with increased diet protein levels (P = 1.05 × 10−7, 

effect size β = 0.632). We also discovered association of two synonymous SNVs (rs2236261 

and rs2236260) in NGDN with an increase in respiratory quotient as measured by 24-h room 

calorimetry. The complete list of single SNVs that met the significance threshold, along with 

gene names, p-values, MAFs, and effect sizes are listed in Table 3.

Discussion

Whole exome sequencing revealed a novel obesity gene, PEX1, in the VIVA LA FAMILIA 

cohort of 916 Hispanic children. PEX1 variants were strongly associated with multiple 

indices of obesity – weight, BMI, waist circumference, fat mass and trunk fat mass. The 

non-synonymous SNV in PEX1 (rs141510219) found to be responsible for the significant 
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gene-based associations is rare (MAF = 0.005) and highly penetrant in the ten affected 

children from three pedigrees. These children would be classified with severe obesity based 

on their BMI z-scores (2.3 to 4.1) and percent fat mass (33 to 51%).

Defects in PEX1 present a novel mechanism for the development of childhood obesity. 

PEX1 is a member of the ATPase family, a large group of ATPases Associated with diverse 

cellular Activities (AAA). This protein is often anchored to a peroxisomal membrane and 

plays a role in the import of proteins into peroxisomes and de novo formation of 

peroxisomes (24). Mutations in PEX1 are responsible for several peroxisome biogenesis 

disorders (PBD), with a spectrum of phenotypes from the most severe Zellweger syndrome, 

characterized by severe neurologic dysfunction, craniofacial abnormalities, and liver 

dysfunction to Heimler syndrome, at the mildest end of the PBD spectrum, characterized by 

hearing loss, enamel hypoplasia, and nail abnormalities.

Peroxisomes are involved in critical metabolic pathways in nearly all cells in the body 

required for health and development (25). PEX genes encode peroxins, which are proteins 

involved in peroxisome assembly. The peroxisome matrix of mammalian cells has over 70 

enzymes required for lipid metabolism including α-, β- and ω-oxidation of fatty acids (FA), 

and other biochemical processes. While peroxisomal β-oxidation does not play a significant 

role in energy production, it does play a critical role in intermediate metabolism of bile 

acids, very long chain FA, pristanic acid, polyunsaturated FA, dicarboxylic FA, xenobiotics, 

protaglandines and leukotriens (26). Phytanic acid and pristanic acid influence transcription 

by activating nuclear receptors RXR-α and PPAR-α. Disruption of hypothalamic 

peroxisomes and reactive oxygen species (ROS) can affect central regulation of energy 

metabolism (27). Peroxisomal proliferation in POMC neurons by a PPAR-δ agonist 

decreased ROS levels and increased food intake in lean mice fed a high fat diet; the opposite 

occurred with PPAR-δ antagonist.

Most recently, a gene-based meta-analysis applied to the GIANT data replicated known 

variants (FTO, TMEM18, MC4R, ADCY3), but also identified six novel variants including 

PEX2 for BMI, substantiating the possible role of PEX genes in the regulation of body 

weight (28). The PEX1 variant (rs141510219) was not assayed in the GIANT GWAS study, 

most likely because it is a very rare variant. In the latest ExAC dataset comprising 60,706 

unrelated individuals (29), the average minor allele frequency for rs141510219 was 0.00028, 

with the highest frequency in the Latino population (0.00139), and lower frequencies in the 

European population (0.00023) and others. In contrast, in our VIVA cohort this variant was 

present at frequency of 0.005. Although the functionality of the non-synonymous SNV in 

PEX1 will require further study, the strong associations seen with obesity phenotypes in 

these Hispanic children and the critical metabolic pathways involving PEX1 present a novel 

mechanism underlying the development of obesity. We recognize that the lack of 

independent replication and functional validation of the PEX1 findings are limitations of this 

study, but hope this result will spur further investigation of the potential link between 

peroxisomal biogenesis and metabolism and obesity.

Several other rare variants associated with obesity-related traits were identified. Because the 

genetic architecture of rare variants acting together in complex diseases is variable, we used 

Sabo et al. Page 7

Obesity (Silver Spring). Author manuscript; available in PMC 2017 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two gene level tests to examine different scenarios (30). No gene was significant in both 

tests, pointing to the complementary nature, and usefulness of applying several tests because 

the effect and directionality of aggregated variants are not known a priori. Ultimately, we 

also found that most gene level tests were driven by one rare SNV.

Unique to the VIVA study design was the measurement of 24-h energy expenditure in room 

respiration calorimeters. We found that the rate of sleeping energy expenditure was 

significantly associated with rare variants in SOCS4. The protein encoded by the SOCS4 
gene belongs to the suppressor of cytokine signaling (SOCS) protein family. Obesity is 

accompanied by increased proinflammatory and decreased anti-inflammatory cytokines 

which contribute to local and systemic inflammation and disturbances in glucose 

homeostasis (31). Animal studies have demonstrated the effect of proinflammatory 

cytokines on energy expenditure (32, 33). Variants in the gene CTH were associated with 

increased levels of plasma cystathionine. The CTH gene encodes a cytoplasmic enzyme that 

converts cystathionine into cysteine. The rs28941785 variant was associated with 

cystathionine levels in an exome-chip based study of the plasma metabolome (34). In VIVA, 

plasma cysteine was positively associated with obesity and insulin resistance, highlighting a 

link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk 

(35). The association of rs200573126, a rare variant in the ADIPOQ gene with serum 

adiponectin levels has been reported previously in an exome sequencing study of Hispanic 

Americans (36). Previous GWAS studies have reported association of common variants in 

the ADIPOQ gene with adiponectin levels (37). In our exome dataset we assayed two 

common variants: synonymous variant rs2241766 and missense variant rs17366743, and 

neither was associated with adiponectin levels in the VIVA cohort.

We also identified common variants that have not been identified by previous GWAS of BMI 

(3, 5–9). A missense variant in PPAR-α was associated with dietary protein (%energy). 

Dietary protein (%energy) which was higher among the obese children may have been a 

marker for obesity (38). Respiratory quotient (RQ) was associated with two synonymous 

SNV in neuroguidin (NGDN), an EIF4E binding protein involved with the development of 

the vertebrate nervous system (39). In addition, we replicated previous VIVA GWAS 

findings for KLKB1, DARC, OR10J3 and SLC2A9 (6, 22, 23).

In summary, the convergence of whole exome sequencing of a large cohort, a family-based 

design, and extensive phenotyping resulted in the discovery of novel rare and common 

variants and replication of previously reported variants associated with childhood obesity. 

Our major finding linking PEX1 to obesity phenotypes poses a novel mechanism of 

peroxisomal biogenesis and metabolism underlying the development of childhood obesity. 

Replication of the PEX1 variants as well as other variants associated with related 

endometabolic traits and functional studies are necessary to validate these findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Importance

• Genome-wide linkage and genome-wide association studies (GWAS) have 

identified a number of putative chromosomal regions and loci, but they 

account for a small fraction and even jointly only a modest proportion of the 

familial risk for obesity

• convergence of whole exome sequencing, a family-based design, and 

extensive phenotyping resulted in discovery of novel rare and common 

variants associated with childhood obesity in a cohort of 928 Hispanic 

children

• major finding is linking peroxisome biogenesis factor 1 (PEX1) to obesity 

phenotypes, a novel mechanism of peroxisomal biogenesis and metabolism 

underlying the development of childhood obesity
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Figure 1. 
Weight z-score (A) and BMI (B) gene-based association results with PEX1 gene p-value 

highlighted; observed vs expected –log p values (QQ plot)
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Figure 2. 
Weight Z (A) and BMI (B) normalized phenotype distribution by PEX1 rs141510219 

genotype: homozygous reference allele (C/C), heterozygous variant (C/T).
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