167 research outputs found

    The Memorability of Supernatural Concepts: Effects of Minimal Counterintuitiveness, Moral Valence, and Existential Anxiety on Recall

    Get PDF
    Within the cognitive science of religion, some scholars hypothesize (1) that minimally counterintuitive (MCI) concepts enjoy a transmission advantage over both intuitive and highly counterintuitive concepts, (2) that religions concern counterintuitive agents, objects, or events, and (3) that the transmission advantage of MCI concepts makes them more likely to be found in the world’s religions than other kinds of concepts. We hypothesized that the memorability of many MCI supernatural concepts was due in large part to other characteristics they possess, such as their frequent and salient association with moral concerns and the alleviation of existential anxieties, and that without such characteristics they would fail to be memorable. We report the results of three experiments designed to test the relative contributions of minimal counterintuitiveness, moral valence, and existential anxiety to the memorability of supernatural ideas. We observed no main effects for minimal counterintuitiveness but did observe main effects for both moral valence and existential anxiety. We also found that these effects did not seem to stem from the greater visualizability of morally valenced concepts or concepts that concerned existential anxieties. These findings challenge important claims made by leading researchers regarding MCI concepts within the cognitive science of religion

    Pre-operative diagnosis of an unusual complication of abdominal aortic aneurysm on multidetector computed tomography: a case report

    Get PDF
    Spontaneous fistulation of an abdominal aortic aneurysm (AAA) into the inferior vena cava (IVC) is an unusual and infrequently encountered complication in clinical practice. In the majority of cases, it is a diagnosis made on the operating table, during surgical repair of AAA. We report a patient with an aortocaval fistula diagnosed preoperatively on multidetector computed tomography (MDCT). Preoperative diagnosis of this rare complication is important as it allows appropriate anaesthetic and surgical planning thereby reducing morbidity and mortality

    Lees and Moonshine: Remembering Richard III, 1485-1635

    Get PDF
    Published version of article deposited in accordance with Sherpa Romeo guidelines. © University of Chicago Press, 2010publication-status: AcceptedNot long after Shakespeare’s birth (1564) the last witnesses to the reign of Richard III (1483-85) would have reached the end of their lives. Richard III (c. 1592) occupies a distinctive historical moment in relation to its subject – a period after the extinction of living memory, but still within the horizon of communicative memory, the period in which stories and recollections may be transmitted across multiple generations. This essay explores how memories and “postmemories” of Richard’s reign were preserved, transmitted and transformed over the course of the sixteenth century and into the seventeenth. Whilst reflecting the powerful influence of emerging contexts including the Reformation and, ultimately, Shakespeare’s play, these memories remained distinct from and sometimes at odds with textual history. They survived because they offered their bearers a resource for interpreting and resisting the predicaments of the present, from the problem of tyranny to the legacies of the Reformation

    Dual targeting of CD19 and CD22 with Bicistronic CAR-T cells in Patients with Relapsed/Refractory Large B Cell Lymphoma

    Get PDF
    Relapse following CD19-directed chimeric antigen receptor T-cells (CAR-T) for relapsed/refractory large B-cell lymphoma (r/r LBCL) is commonly ascribed to antigen loss or CAR-T exhaustion. Multi-antigen targeting and PD-1 blockade are rational approaches to prevent relapse. Here, we test CD19/22 dual-targeting CAR-T (AUTO3) plus pembrolizumab in r/r LBCL as inpatient or outpatient therapy (NCT03289455, https://clinicaltrials.gov/ct2/show/NCT03289455). Endpoints include toxicity (primary) and response rates (secondary). AUTO3 was manufactured for 62 patients using autologous leukapheresis, modified with a bicistronic transgene. 52 patients received AUTO3 (7/52,50x106; 45/52,150-450x106) and 48/52 received pembrolizumab. Median age was 59 years (range,27-83) and 46/52 had stage III/IV disease. Median follow-up was 21.6 months (range,15.1-51.3) at last data cut (Feb 28, 2022). AUTO3 was safe: grade 1-2 and grade 3 CRS affected 18/52 (34.6%) and 1/52 (1.9%) patients, neurotoxicity arose in 4 patients (2/4, grade 3-4), HLH affected 2 patients, and no Pembrolizumab-associated autoimmune sequalae were observed. On this basis, outpatient administration was tested in 20 patients, saving a median of 14 hospital days/patient. AUTO3 was effective: overall response rates were 66% (48.9%, CR; 17%, PR). For patients with CR, median DOR was not reached, with 54.4% (CI: 32.8, 71.7) projected to remain progression-free beyond 12 months after onset of remission. DOR for all responding patients was 8.3 months (95% CI: 3.0, NE) with 42.6% projected to remain progression-free beyond 12 months after onset of remission. Overall, AUTO3 +/- pembrolizumab for r/r LBCL was safe, lending itself to outpatient administration, and delivered durable remissions in 54.4% of complete responders, associated with robust CAR-T expansion. Neither dual-targeting CAR-T nor pembrolizumab prevented relapse in a significant proportion of patients, and future developments include next-generation-AUTO3, engineered for superior expansion/persistence in vivo, and selection of CAR binders active at low antigen densities

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Variable Mutation Rates as an Adaptive Strategy in Replicator Populations

    Get PDF
    For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates
    corecore