2,649 research outputs found

    The rate and cost of nurse turnover in Australia

    Full text link
    © 2014 Australian College of Nursing Ltd. Nurse turnover is a critical issue facing workforce planners across the globe, particularly in light of protracted and continuing workforce shortages. An ageing population coupled with the rise in complex and chronic diseases, have contributed to increased demands placed on the health system and importantly, nurses who themselves are ageing. Costs associated with nurse turnover are attracting more attention; however, existing measurements of turnover show inconsistent findings, which can be attributed to differences in study design, metrics used to calculate turnover and variations in definitions for turnover. This paper will report the rates and costs of nurse turnover across three States in Australia

    Instability in patient and nurse characteristics, unit complexity and patient and system outcomes

    Full text link
    © 2014 John Wiley & Sons Ltd. Aims: To explore key factors related to nursing unit instability, complexity and patient and system outcomes. Background: The relationship between nurse staffing and quality of patient outcomes is well known. The nursing unit is an important but different aspect that links to complexity and to system and patient outcomes. The relationship between the instability, complexity and outcomes needs further exploration. Design: Descriptive. Methods: Data were collected via a nurse survey, unit profile and review of patient records on 62 nursing units (wards) across three states of Australia between 2008-2010. Two units with contrasting levels of patient and nurse instability and negative system and patient outcomes, were profiled in detail from the larger sample. Results: Ward A presented with greater patient stability (low occupancy, high planned admissions, few ICU transfers, fewer changes to patient acuity/work re-sequencing) and greater nurse instability (nurses changing units, fewer full-time staff, more temporary/casual staff) impacting system outcomes negatively (high staff turnover). In contrast, Ward B had greater patient instability, however, more nurse stability (greater experienced and permanent staff, fewer casuals), resulting in high rates for falls, medication errors and other adverse patient outcomes with lower rates for system outcomes (lower intention to leave). Conclusion: Instability in patient and nurse factors can contribute to ward complexity with potentially negative patient outcomes. The findings highlight the variation of many aspects of the system where nurses work and the importance of nursing unit managers and senior nurse executives in managing ward complexity

    Impaired sleep and recovery after night matches in elite football players

    Full text link
    © 2016 Informa UK Limited, trading as Taylor & Francis Group. ABSTRACT: Despite the perceived importance of sleep for elite footballers, descriptions of the duration and quality of sleep, especially following match play, are limited. Moreover, recovery responses following sleep loss remain unclear. Accordingly, the present study examined the subjective sleep and recovery responses of elite footballers across training days (TD) and both day and night matches (DM and NM). Sixteen top division European players from three clubs completed a subjective online questionnaire twice a day for 21 days during the season. Subjective recall of sleep variables (duration, onset latency, time of wake/sleep, wake episode duration), a range of perceptual variables related to recovery, mood, performance and internal training loads and non-exercise stressors were collected. Players reported significantly reduced sleep durations for NM compared to DM (−157 min) and TD (−181 min). In addition, sleep restfulness (SR; arbitrary scale 1 = very restful, 5 = not at all restful) and perceived recovery (PR; acute recovery and stress scale 0 = not recovered at all, 6 = fully recovered) were significantly poorer following NM than both TD (SR: +2.0, PR: −2.6), and DM (SR: +1.5; PR: −1.5). These results suggest that reduced sleep quantity and quality and reduced PR are mainly evident following NM in elite players

    Sleep Hygiene and Light Exposure Can Improve Performance Following Long-Haul Air Travel.

    Full text link
    PURPOSE:To assess the efficacy of a combined light exposure and sleep hygiene intervention to improve team-sport performance following eastward long-haul transmeridian travel. METHODS:Twenty physically trained males underwent testing at 09:00 and 17:00 hours local time on 4 consecutive days at home (baseline) and the first 4 days following 21 hours of air travel east across 8 time zones. In a randomized, matched-pairs design, participants traveled with (INT; n = 10) or without (CON; n = 10) a light exposure and sleep hygiene intervention. Performance was assessed via countermovement jump, 20-m sprint, T test, and Yo-Yo Intermittent Recovery Level 1 tests, together with perceptual measures of jet lag, fatigue, mood, and motivation. Sleep was measured using wrist activity monitors in conjunction with self-report diaries. RESULTS:Magnitude-based inference and standardized effect-size analysis indicated there was a very likely improvement in the mean change in countermovement jump peak power (effect size 1.10, ±0.55), and likely improvement in 5-m (0.54, ±0.67) and 20-m (0.74, ±0.71) sprint time in INT compared with CON across the 4 days posttravel. Sleep duration was most likely greater in INT both during travel (1.61, ±0.82) and across the 4 nights following travel (1.28, ±0.58) compared with CON. Finally, perceived mood and motivation were likely worse (0.73, ±0.88 and 0.63, ±0.87) across the 4 days posttravel in CON compared with INT. CONCLUSIONS:Combined light exposure and sleep hygiene improved speed and power but not intermittent-sprint performance up to 96 hours following long-haul transmeridian travel. The reduction of sleep disruption during and following travel is a likely contributor to improved performance

    Haematopoietic stem cell migration to the ischemic damaged kidney is not altered by manipulating the SDF-1/CXCR4-axis

    Get PDF
    Background. Haematopoietic stem cells (HSC) have been shown to migrate to the ischemic kidney. The factors that regulate the trafficking of HSC to the ischemic damaged kidney are not fully understood. The stromal cell-derived factor-1 (SDF-1)/CXCR4-axis has been identified as the central signalling axis regulating trafficking of HSC to the bone marrow. Therefore, we hypothesized that SDF-1/CXCR4 interactions are implicated in the migration of HSC to the injured kidney

    Computable bounds in fork-join queueing systems

    Get PDF
    In a Fork-Join (FJ) queueing system an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks' response times. This queueing system is useful to the modelling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems. We consider four practical scenarios by combining 1a) renewal and 1b) non-renewal arrivals, and 2a) non-blocking and 2b) blocking servers. In the case of non blocking servers we prove that delays scale as O(logN), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of log N dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing 'makes sense' from a queueing perspective for two paths only, i.e., response times drop the most when N = 2; the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions

    The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb

    Get PDF
    Intrauterine growth restriction (IUGR) followed by accelerated growth after birth is associated with an increased risk of abdominal (visceral) obesity and insulin resistance in adult life. The aim of the present study was to determine the impact of IUGR on mRNA expression and protein abundance of insulin signaling molecules in one of the major visceral fat depots, the omental adipose depot. IUGR was induced by placental restriction, and samples of omental adipose tissue were collected from IUGR (n = 9, 5 males, 4 females) and Control (n = 14, 8 males, 6 females) neonatal lambs at 21 days of age. The mRNA expression of the insulin signaling molecules, AMP-kinase (AMPK) and adipogenic/lipogenic genes was determined by qRT-PCR, and protein abundance by Western Blotting. AMPKα2 mRNA expression was increased in male IUGR lambs (0.015 ± 0.002 v. 0.0075 ± 0.0009, P < 0.001). The proportion of the AMPK pool that was phosphorylated (%P-AMPK) was lower in IUGR lambs compared with Controls independent of sex (39 ± 9% v. 100 ± 18%, P < 0.001). The mRNA expression and protein abundance of insulin signaling proteins and adipogenic/lipogenic genes was not different between groups. Thus, IUGR is associated with sex-specific alterations in the mRNA expression of AMPKα2 and a reduction in the percentage of the total AMPK pool that is phosphorylated in the omental adipose tissue of neonatal lambs, before the onset of visceral obesity. These molecular changes would be expected to promote lipid accumulation in the omental adipose depot and may therefore contribute to the onset of visceral adiposity in IUGR animals later in life.S. Lie, J. A. Duffield, I. C. McMillen, J. L. Morrison, S. E. Ozanne, C. Pilgrim and B. S. Muhlhausle

    Clostridium difficile PCR Ribotypes in Calves, Canada

    Get PDF
    C. difficile, including epidemic PCR ribotypes 017 and 027, were isolated from dairy calves in Canada

    Low alanine aminotransferase and higher cardiovascular events in type 2 diabetes: analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study

    Get PDF
    Aims Non-alcoholic fatty liver disease (NAFLD) is common in type 2 diabetes and associated with higher risk of cardiovascular disease. This study aimed to determine whether alanine aminotransferase (ALT) or gamma-glutamyltransferase (GGT), as markers of liver health and NAFLD, might predict cardiovascular events in this population. Methods Data from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study were analysed to examine the relationship between liver enzymes and incident cardiovascular events (nonfatal myocardial infarction, stroke, coronary and other cardiovascular death, coronary or carotid revascularization) over 5 years. Results ALT had a linear inverse relationship with the first cardiovascular event on study. After adjustment, for every standard deviation higher baseline ALT (13.2U/L), the risk of an event was 7%(95%CI 4–13, P=0.02) lower. Participants with ALT below and above the reference range 8–41 U/L for women and 9–59 U/L for men, had a hazard ratio of an event of 1.86(95%CI, 1.12–3.09) and 0.65(95%CI, 0.49–0.87), respectively (P=0.001). No relationship was found for GGT. Conclusions The data may indicate that in type 2 diabetes — associated with higher ALT due to prevalent NAFLD — lower ALT is a marker of hepatic or systemic frailty rather than health

    Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury

    Get PDF
    Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvβ5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvβ5 in a rat model of renal IRI. Pretreatment with this anti-αvβ5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvβ5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvβ5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvβ5 antibody treatment. Immunostaining for αvβ5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvβ5 in modulating vascular leak. Additional studies showed αvβ5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvβ5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvβ5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvβ5 inhibition as a promising therapeutic strategy for AKI
    • …
    corecore