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Abstract 

Aims 

Non-alcoholic fatty liver disease (NAFLD) is common in type 2 diabetes and associated 

with higher risk of cardiovascular disease. This study aimed to determine whether alanine 

aminotransferase (ALT) or gamma-glutamyltransferase (GGT), as markers of liver health 

and NAFLD, might predict cardiovascular events in this population.  

Methods 

Data from the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study 

were analysed to examine the relationship between liver enzymes and incident 

cardiovascular events (nonfatal myocardial infarction, stroke, coronary and other 

cardiovascular death, coronary or carotid revascularization) over 5 years.  

Results 

ALT had a linear inverse relationship with the first cardiovascular event on study. After 

adjustment, for every standard deviation higher baseline ALT (13.2U/L), the risk of an 

event was 7%(95%CI 4–13, P=0.02) lower. Participants with ALT below and above the 

reference range 8–41 U/L for women and 9–59 U/L for men, had a hazard ratio of an event 

of 1.86(95%CI, 1.12–3.09) and 0.65(95%CI, 0.49–0.87), respectively (P=0.001). No 

relationship was found for GGT.  

Conclusions 

The data may indicate that in type 2 diabetes — associated with higher ALT due to 

prevalent NAFLD — lower ALT is a marker of hepatic or systemic frailty rather than 

health. 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to cirrhosis, is 

strongly associated with diabetes and the metabolic syndrome [1]. While not universally 

accepted, the potential systemic implications of NAFLD are increasingly being recognized 

[1]. This would include the clinically important, independent association between NAFLD 

and cardiovascular disease that has been asserted by many, although not all, groups [1-3]. A 

logical step to explore this association, has been to examine liver enzymes as predictors of 

cardiovascular events [4], and their use as part of risk-algorithms for cardiovascular disease 

has been proposed [5]. Alanine aminotransferase (ALT), has a good correlation with liver 

fat, as assessed by magnetic resonance spectroscopy, and is a viewed as a valid marker of 

necroinflammation in NAFLD [4, 6]. Both ALT and gamma glutamyl-transferase (GGT) 

are associated with the metabolic syndrome, insulin resistance, and diabetes and its 

development, but their relationship with cardiovascular outcomes is more complex [1, 2, 4, 

5, 7-14]. 

This study sought to examine the association of baseline ALT and GGT with time to total 

cardiovascular events in participants of the Fenofibrate Intervention and Event Lowering in 

Diabetes (FIELD) study, designed to assess the effect of fenofibrate on cardiovascular 

disease events in people with diabetes [15]. 

Patients and Methods 

The study was a subsidiary analysis of the FIELD study—a double-blind, placebo-

controlled trial done in 63 centres in Australia, New Zealand, and Finland [15]. In brief, 

9795 participants aged 50–75 years with type 2 diabetes according to WHO criteria [16] 

were randomly allocated between 1998 and 2000 to once-daily micronized fenofibrate or 

placebo. Participants had an initial total-cholesterol concentration 3.0–6.5 mmol/L, plus 
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either total-cholesterol/HDL-cholesterol ratio ≥4.0 or plasma triglyceride concentration 

1.0–5.0 mmol/L, and not on lipid-modifying therapy at study entry. Exclusion criteria 

included: blood creatinine >130 μmol/L, chronic liver disease, a cardiovascular event 

within 3 months of recruitment, ALT >2 times the upper limit of normal and a recent 

history of alcohol abuse. Total cardiovascular events was a pre-specified secondary 

endpoint and included nonfatal myocardial infarction, total stroke, cardiovascular death, 

coronary and carotid revascularization [15]. 

Baseline characteristics 

A full clinical assessment was performed at baseline. A history of macrovascular disease 

was defined as any self-reported history of myocardial infarction, angina, percutaneous 

transluminal coronary angioplasty, coronary artery bypass grafting, stroke, claudication, 

peripheral vascular disease, or peripheral revascularization. Nephropathy was defined as the 

presence of albuminuria [15]. Alcohol consumption pattern was classified as none, 

infrequent (special occasion to once/week) or regular (≥2 times/week), as data were lacking 

for grams taken per week. 

Laboratory parameters 

All samples were analysed at one of two laboratories: SA Pathology, Adelaide, Australia or 

the laboratory of the National Public Health Institute, Helsinki, Finland. Both laboratories 

participated in national quality assurance schemes. ALT and GGT were measured 16 weeks 

and ALT again 6 weeks before randomization. The average of the two ALT measurements 

was used for analysis. All specimens were stored immediately at -20°C and shipped 

expediently (within 7 days) for processing. ALT and GGT assays used standard 

colorimetric techniques consistent with the guidelines of the International Foundation of 

Clinical Chemistry (IFCC) [17].  
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Statistical analysis  

Analyses were performed on an intention-to-treat basis using SPSS v21, and confirmed on 

SAS v9.3. Due to the non-normal distribution of both ALT and GGT, their relationship 

with baseline characteristics was determined using Spearman’s correlation for continuous 

variables and the Wilcoxon rank–sum or Kruskal–Wallis test for categorical variables. To 

assess the relationship between baseline ALT and GGT and time to first cardiovascular 

event, Cox proportional-hazards regression was used to compute hazard ratios (HRs) and 

95% confidence intervals (CIs). Examined by quintiles and deciles, the data were consistent 

with a linear relationship between ALT and cardiovascular events (Fig. 1), and so 

continuous ALT (per one SD) was used in predictive models. With similar techniques, 

GGT had a nonlinear relationship to the time to first cardiovascular event, and so the 

primary analysis was by quintiles (Fig. 1). All models were adjusted for assignment to 

fenofibrate and the following pre-specified baseline variables: age, gender, diabetes 

duration, hypertension, nephropathy, macrovascular disease, current-smoker status, waist-

hip-ratio, HbA1c, triglyceride levels, HDL-cholesterol (HDL-c) and LDL-cholesterol 

(LDL-c).  

For ALT, in post hoc analysis, the multivariable model was further individually adjusted 

for laboratory used, alcohol consumption pattern or C-peptide, fasting glucose, and diabetes 

treatment category (diet, oral antidiabetic therapy or insulin±oral therapy). Penalized Cox 

modelling with an estimate of treatment effect was then used to adjust for statin therapy use 

on study [18]. To explore whether ALT might be acting as a marker of systemic frailty, the 

model was also adjusted for reported activity (very light, light, moderate, heavy or very 

heavy) [19]. Interactions among all predefined baseline variables, in addition to laboratory 

used, alcohol consumption pattern, C-peptide, fasting glucose, and diabetes treatment 
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category, were tested to identify any differential effect of ALT between various categories, 

with P<0.05 considered significant. If positive interactions were found, appropriate sub-

analysis was then performed. 

The multivariable GGT quintile model was further adjusted individually for alcohol 

consumption pattern and baseline ALT. Given no clear relationship between GGT and time 

to first cardiovascular event after adjustment, interaction testing for GGT was limited to 

specific variables: assignment to fenofibrate use, age, sex, history of macrovascular disease, 

alcohol consumption pattern, laboratory used and ALT. 

To further explore the relationships seen in primary models, the population was divided 

into normal, low, and high ALT and GGT by established international reference ranges, 

published by Ceriotti et al on behalf of the IFCC [17]. Kaplan–Meier graphs were produced 

for time to first total cardiovascular event for both ALT and GGT by category. To explore 

differences among these groups in baseline characteristics, including presence of the 

metabolic syndrome (ATP III criteria [20]) and in measures of homeostasis model 

assessment of insulin resistance (HOMA-IR), highly-sensitive C-reactive protein (hsCRP) 

and platelets as markers of insulin resistance, inflammation, and hypersplenism, 

respectively, the Wilcoxon rank–sum or the Kruskal–Wallis test was used for continuous 

data and the chi-squared test for categorical variables. HRs for the first cardiovascular event 

on study using these categories were calculated using Cox regression. Models were 

univariate only, given the limited number of events in the low ALT and GGT categories. 

Ethics 

All participants provided written informed consent. The study protocol was approved by 

local and national ethics committees and was undertaken in accordance with the 
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Declaration of Helsinki and Good Clinical Practice Guidelines. The original trial was 

registered with the International Standard Randomised Controlled Trial Number (ISRCTN) 

64783481. 

Results 

Baseline associations with ALT and GGT 

The average age of the cohort was 62±7 years. Median (interquartile range, (IQR)) diabetes 

duration, HbA1c and BMI were 5(2–10) years, 52(43-62) mmol/mol (6.9(6.1–7.8) %), and 

29.8(26.8–33.5) kg/m
2
, respectively. In regard to medication, 2608(27%) were on diet, 

5841(59%) were on oral antidiabetic therapy only, and 1346(14%) were on insulin ± oral 

therapy. 

The median baseline ALT was 24(IQR 18–33) U/L and the median baseline GGT was 

29(IQR 21–44) U/L. Lower ALT, but not GGT, was associated with a prior history of 

macrovascular disease and current smoking. GGT had a positive correlation with hsCRP 

(Table 1 and eTable 1). 

With normal ALT defined as 8–41 U/L for women and 9–59 U/L for men [17], 1%(n=64) 

had low ALT and 6%(n=550) had high ALT. Of participants with low, normal, and high 

ALT, 15/64(23%), 1230/9181(13%) and 50/550(9%) had cardiovascular events on study, 

respectively (Table 2, eTable 1). Of those with low ALT, 40% of events were death due to 

cardiovascular disease, compared to 17% in those with normal ALT, and 8% in those with 

high ALT (Table 2). With normal GGT defined as 6–40 U/L for women and 12–68 U/L for 

men [17], 1%(n=76) of the cohort had low GGT and 16%(n=1566) had high GGT. Of 

participants with low, normal, and high GGT, 6/70(8%), 1100/8153(13%), and 

189/1566(12%) had cardiovascular events, respectively. Data for basic demographics and 
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metabolic syndrome presence, HOMA-IR, hsCRP, platelet count, and cardiovascular deaths 

as proportions of first cardiovascular events on study for ALT and GGT categories are 

shown in eTable 1. 

Baseline ALT and first cardiovascular event 

In univariate analysis, the risk of a cardiovascular event was  8(3-13)% lower for each SD 

(13.2 U/L) higher ALT at baseline (P=0.004). This relationship remained significant after 

adjustment (Table 3). The unadjusted HRs for cardiovascular events on study in those 

above and below the reference ranges for ALT when compared to those with normal ALT 

were 0.65(95% CI, 0.49–0.87) and 1.86(95% CI, 1.12–3.09), respectively (P=0.001) (Fig. 

2, eTable 1). 

The primary model was adjusted for other possible contributing factors, which did not 

affect the relationship between ALT and cardiovascular events (Table 3). A positive 

interaction was found for HDL-c and ALT for the relationship between ALT and 

cardiovascular events (P=0.03 for interaction).  To further explore this, sub-analysis was 

performed with the Cohort divided into HDL-c quintiles (Table 4). 

Baseline GGT and first cardiovascular event 

GGT quintiles were significantly related to time to first cardiovascular event in univariate 

analysis (P=0.001). This relationship was attenuated after adjustment, although, 

qualitatively, the lowest GGT quintile appeared to have a lower risk of events than the 

remainder of the cohort (Fig. 1). Adjustment for alcohol consumption pattern had no effect 

on the model. Interestingly, statistical associations of GGT quintiles with cardiovascular 

events were significant after adjustment for ALT (P=0.04, Table 5). No interaction was 

found for assignment to fenofibrate, age, sex, alcohol consumption pattern, laboratory used, 



9 

history of macrovascular disease or ALT. The unadjusted HRs for the first cardiovascular 

event on study for those with low or high GGT when compared to those with normal GGT 

were 0.56(0.25–1.25) and 0.90(0.7–1.05), respectively (Fig. 2, eTable 1).  

Discussion 

ALT had an inverse relationship with the first cardiovascular event on study in people with 

type 2 diabetes, without known chronic liver disease, and with ALT not greater than twice 

the upper limit of normal. No clear association between GGT and the time to first 

cardiovascular event was found. 

Given that NAFLD is considered a potential risk factor for cardiovascular disease, our 

finding might seem counterintuitive; however, similar results have been reported in regard 

to both mortality and cardiovascular events in several other studies using cohorts with 

different characteristics and not defined by diabetes [21] [22] [9]
,
[23] [24]. Our results are, 

however, contrary to the findings of other studies that have found either a positive or no 

association between ALT and cardiovascular disease events and mortality [2, 7, 10]. The 

reasons for these differences could include the population selected for study, in particular 

their dissimilar overall cardiovascular risk and range of ALT levels, and the duration of 

follow-up and the methods of analysis, including whether linear or threshold analysis was 

used for ALT. 

ALT is commonly higher in type 2 diabetes and often presumed to represent NAFLD, 

which has a prevalence of 70% in diabetes overall and can be significantly higher when 

obesity is also present [1, 4]. ALT may also be elevated due to other factors [1, 4]. For 

example, higher ALT in diabetes may also be the result of upregulated gluconeogenesis 

through hepatic insulin resistance, in addition to the production of ALT within adipose 
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tissue when insulin resistance and obesity coexist (as demonstrated in mice) [4]. Perhaps 

similar to the increased risk for mortality that has been demonstrated in those with type 2 

diabetes with low or normal body weight when compared to those who are in the 

overweight category [25, 26], a low ALT in our cohort may not be associated with health 

but may rather exist as a marker of a more severe phenotype, without significant insulin 

resistance or steatosis, consisting of reduced β-cell function, an at-risk genetic profile 

and/or overall biological frailty and co-morbidity [19, 26].  

Low ALT has been linked to frailty in several studies, although our limited analysis to 

explore the role of ALT as a potential marker of frailty was not useful. For example, Ruhl 

et al showed that adjusted appendicular lean mass, potentially associated with sarcopenia, 

was lower among the lowest ALT deciles in 15 028 subjects whose body composition was 

measured by dual-energy X-ray absorptiometry [9]. Couteur et al, found that lower ALT 

was associated with older age and lower survival over 4.9 years of follow-up in 1673 

community-dwelling men aged >70 years [19]. This finding was attenuated by adjustment 

for frailty, with ALT independently associated with frailty as defined by a formal frailty 

index.  

Low ALT may also be a marker of reduced liver reserve, perhaps enhancing an 

environment of increased oxidative stress, as a result of biological aging and/or increased 

liver fibrosis due to non-alcoholic steatohepatitis [8, 27]. Indeed, while results are mixed, 

the severity of liver disease may increase cardiovascular risk in NAFLD [1, 28], with the 

presence of simple steatosis alone having no adverse implications [29]. Moreover, ALT 

levels are thought to be 22–64% heritable, with ALT loci near genes involved in glucose 

and lipid metabolism, inflammation and immunity, and the biogenesis of mitochondria 
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[30], as a potential link between ALT and clinically important genes that may affect 

cardiovascular risk [30]. The potential for greater risk reduction by statin therapy in those 

with a higher ALT is also possible [22]
,
[12], perhaps through a greater reduction in small 

LDL particles or other adverse lipid measures [11, 12], although adjustment for statin 

therapy did not significantly change our results. Lower ALT has also been associated with 

several markers of systemic inflammation in one study [11] and with higher NT proBNP in 

another [31]. 

Clinical and biochemical associations with increasing ALT in our analysis were similar to 

those previously described [1, 8, 11], and included positive associations with measures of 

adiposity, the metabolic syndrome, insulin resistance, and poorer glycaemic control. Those 

with a known history of macrovascular disease and those who were current smokers or 

users of insulin, all factors that may potentially increase future cardiovascular event risk, 

had lower ALT than their respective reference group. ALT also had an inverse association 

with age. Despite these associations, which may link low ALT to cardiovascular events, no 

interaction was found for these factors, and appropriate adjustments were included in 

multivariable models. A positive interaction was found for HDL-c, with subsequent quintile 

analysis suggesting that the relationship was most pronounced in those with HDL-c ≤ 0.88 

mmol/L, consistent with more significant dyslipidaemia. No significant interaction was 

found for fenofibrate therapy, excluding a differential treatment effect. 

Surprisingly, we did not find a relationship between GGT and on-study cardiovascular 

events after adjustment. As GGT is presumed to be a less specific marker of liver fat and 

NAFLD per se, and rather may reflect the metabolic syndrome [4, 5, 13], this may be 

explained by the effects of adjustment for variables that would also reflect an adverse 
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metabolic profile. Interestingly, further adjustment for alcohol consumption pattern did not 

significantly affect the model. On the other hand, adjustment for ALT did strengthen the 

relationship between GGT and cardiovascular events, perhaps by selecting for elevated 

GGT due to liver fibrosis (by adjusting for steatosis), or by selecting for GGT as a marker 

of oxidative stress ± atherosclerotic burden, rather than liver pathology [5, 8, 14, 30]. 

Despite the statistically negative finding, the positive direction of the association between 

GGT and cardiovascular events is consistent with current literature. GGT has been 

positively associated with incident vascular events and mortality in several studies but not 

all [5, 8, 9, 13, 19].  

Strengths of our analysis include the use of prospective data from a large, well-defined 

cohort, with pre-specified outcomes. In addition, intra-individual variation in ALT was 

accommodated by using an average of two independent samples. Weaknesses of our 

findings relate to the problems of secondary analysis. High ALT and known chronic liver 

disease were exclusion criteria and so the effects of comorbidity due to liver disease are 

likely to be attenuated in this data set. Also, follow-up was a median of 5 years, which is 

perhaps insufficient time to see the effects of an adverse metabolic phenotype associated 

with higher baseline ALT. Participants selected for study for a clinical trial may have been 

healthier than a community dwelling population with diabetes. ALT and GGT were 

measured at two laboratories, and differences in analytical technique and geographic 

variation may not have been fully adjusted for [17]. Alcohol consumption by grams per 

week, steatosis presence, or NAFLD severity could not be corrected for, nor could 

assessment by a formal frailty index. Reference ranges used meant that groups above and 

below normal had small numbers. Normal values for liver enzymes have not been 
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established. These reference ranges were chosen as they were developed from an 

international cohort, with strict attention to population selected and analytical technique 

[17]. The analysis using these reference ranges was illustrative only, to complement 

primary models. 

While NAFLD has been linked to cardiovascular disease, in populations with type 2 

diabetes, a lower ALT may predict cardiovascular events. Study of the mechanisms behind 

lower ALT being associated with cardiovascular outcomes in various at-risk groups is 

needed, with a particular emphasis on formal assessment of biological frailty and co-

morbidity, NAFLD severity, and lipid parameters in cohorts under study. Use of ALT or 

GGT in predictive algorithms for cardiovascular disease is premature. 
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Tables 

Table 1: Clinical and biochemical associations with baseline alanine aminotransferase (ALT) 

and gamma glutamyltransferase (GGT) levels 

 ALT GGT 

Baseline characteristic (number, % of 
cohort) 

Median and IQR 
(U/L) or 

correlation 
coefficient P 

Median and IQR 
(U/L) or 

correlation 
coefficient P 

Age (years) –0.21 <0.001 –0.13 <0.001 

Sex  <0.001  <0.001 

 Female (n=3657, 37%) 21 (16–29)  26 (19–40)  

 Male 25 (19–35)  31 (22–46)  

Country of recruitment  <0.001  <0.001 

 Australia or New Zealand (n=8402, 86%) 23 (18–32)  29 (21–43)  

 Finland 26 (19–37)  32 (22–48)  

Waist-hip ratio 0.26 <0.001 0.25 <0.001 

Body mass index (kg/m
2
) 0.19 <0.001 0.21 <0.001 

Diabetes duration (years) –0.04 <0.001 –0.05 <0.001 

Smoking status  <0.001  <0.001 

 Non-smoker (n=3929, 40%) 23 (17–32)  27 (19–40)  

 Ex-smoker (n=4944, 51%) 25 (19–34)  30 (22–46)  

 Current smoker (n=922, 9%) 23 (17–31)  31 (22–47)  

Alcohol intake  <0.001  <0.001 

 None (n=2691, 28%) 23 (17–31)  27 (20–40)  

 Infrequent (n=4604, 47%) 24 (18–32)  28 (20–42)  

 Regular (n=2494, 25%) 25 (19–35)  34 (24–52)  

Metabolic syndrome (n=8101, 83%) 24 (18–34) <0.001 30 (22–46) <0.001 

No metabolic syndrome 21 (16–28)  25 (17–36)  

Comorbidity     

 Hypertension (n=5546, 57%) 24 (18–33)  0.34 30 (22–46) <0.001 

 No hypertension 24 (18–32)  28 (20–41)  

 Known macrovascular disease (n=2131, 
22%) 

23 (18–31) 
<0.001 

29 (21–45) 
0.08 

 No known macrovascular disease 24 (18–33)  29 (21–44)  

 Nephropathy (n=2508, 26%) 24 (18–34) 0.007 32 (23–48) <0.001 

 No nephropathy 24 (18–32)  28 (20–42)  
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 ALT GGT 

Baseline characteristic (number, % of 
cohort) 

Median and IQR 
(U/L) or 

correlation 
coefficient P 

Median and IQR 
(U/L) or 

correlation 
coefficient P 

Medication     

 Metformin (n=4794, 49%) 25 (18–35) <0.001 30 (22–46) <0.001 

 No metformin 23 (18–31)  28 (20–42)  

 Sulfonylurea (n=4433, 45%) 25 (19–34) <0.001 30 (22–47) <0.001 

 No sulfonylurea 23 (18–31)  28 (20–42)  

 Insulin (n=1346, 14%) 23 (17–30) 0.003 28 (19–43) <0.001 

 No insulin 24 (18–33)  29 (21–44)  

Diabetes treatment overall  <0.001  <0.001 

 Diet only 22.5 (17.5–30.5)  28 (20–40)  

 Oral hypoglycaemic 24.5 (18.0–34.0)  30 (22–46)  

 Insulin ± oral hypoglycaemic 22.5 (17.0–30.0)  28 (19–43)  

Biochemistry     

 HbA1c (% or mmol/mol) 0.12 <0.001 0.12 <0.001 

 Fasting glucose (mmol/L) 0.16 <0.001 0.14 <0.001 

 C-peptide (nmol/L) 0.29 <0.001 0.30 <0.001 

 HDL-C (mmol/L) –0.15 <0.001 –0.09 <0.001 

 LDL-C (mmol/L) –0.09 <0.001 –0.09 <0.001 

 Triglyceride (mmol/L) 0.15 <0.001 0.21 <0.001 

 Apolipoprotein A1 (g/L) –0.10 <0.001 –0.01 0.27 

 Apolipoprotein B (g/L) 0.03 0.001 0.07 <0.001 

 Lipoprotein a (g/L) –0.10 <0.001 –0.10 <0.001 

 Highly-sensitive C-reactive protein (mg/L) –0.01 0.49 0.18 <0.001 

 Uric acid (μmol/L) 0.11 <0.001 0.14 <0.001 

 HOMA insulin resistance 0.32 <0.001 0.33 <0.001 

 Platelets (x10
9
/L) –0.14 <0.001 –0.09 <0.001 

 ALT (U/L) –  0.51 <0.001 
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Table 2: Type of first cardiovascular event on study by alanine aminotransferase (ALT) 

category as determined by reference ranges set by Ceriotti et al [17]. 

Type of cardiovascular event 
ALT below 

reference range 
ALT within 

reference range* 
ALT above 

reference range 

Death due to coronary heart disease 5 (33%) 154 (13%) 3 (6%) 

Death due to other cardiovascular disease 1 (7%) 49 (4%) 1 (2%) 

Coronary artery bypass grafting 4 (27%) 224 (18%) 6 (12%) 

Percutaneous transluminal coronary 
angioplasty 

1 (7%) 190 (15%) 14 (28%) 

Nonfatal coronary infarction 3 (20%) 317 (26%) 15 (30%) 

Nonfatal stroke 1 (7%) 257 (21%) 8 (16%) 

Carotid revascularization 0 39 (3%) 3 (6%) 

Total number of events/total in group 15/64 1230/9181 50/550 

* Using these reference ranges, normal ALT, 8–41 U/L for women and 9–59 U/L for men. 

Data are presented as n (%) within each group. 
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Table 3: Relationship between baseline alanine aminotransferase (ALT) and first 

cardiovascular event  

Model 

Hazard 

ratio
a
 

95% confidence 

interval P 

Unadjusted (n=9795, 1295 events) 0.92 0.87–0.97 0.004 

Adjusted (n=9765, 1291 events)
b
 0.92 0.87–0.98 0.01 

Adjusted plus central laboratory (n=9765, 1291 events) 0.92 0.87–0.98 0.01 

Adjusted plus alcohol consumption pattern (n=9759, 1288 
events) 

0.92 0.87–0.98 0.01 

Adjusted plus C-peptide, fasting glucose (to replace HbA1c) and 
diabetes treatment (n=9658, 1281 events) 

0.91 0.85–0.97 0.003 

Adjusted plus statin therapy (penalized Cox model) (n=9765, 
1291 events) 

0.92 0.87 – 0.98 0.01 

Adjusted for reported level of activity (n=9648, 1273 events) 0.92 0.86 - 0.98 0.01 

a
 Per 1 standard deviation higher baseline ALT. 

b
 The adjusted model includes: assignment to treatment with fenofibrate and baseline: age, sex, diabetes 

duration, known macrovascular disease, hypertension, nephropathy, current smoker status, waist-hip-ratio, 
HbA1c, triglyceride level, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol.  
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Table 4. Relationship between baseline alanine aminotransferase (ALT) and cardiovascular 
(CVD) events by High-density lipoprotein cholesterol (HDL-c) quintiles using Cox 
Proportional Hazards Regression analysis 
 

 

ALT per SD (13.2 U/L) 

 

Variable (CVD events/total number of individuals in analysis) HR (95% CI) p value 

HDL-c ≤ 0.88mmol/L (364/1968) 0.86 (0.77-0.97) 0.01 

HDL-c > 0.88 mmol/L and ≤ 1.01 mmol/L (298/2037) 0.88 (0.78-1.00) 0.05 

HDL-c > 1.01 mmol/L and ≤ 1.12 mmol/L (234/1901) 0.91 (0.79-1.04) 0.17 

HDL-c > 1.12  mmol/L and ≤ 1.28 mmol/L (214/1916) 1.07 (0.94-1.22) 0.31 

HDL-c > 1.28 mmol/L (181/1943) 0.99 (0.84-1.16) 0.88 

P value for trend in effect of ALT by HDL-c quintiles = 0.022 

a 
model adjusted for: assignment to treatment with fenofibrate and baseline age, sex, diabetes duration, known 

macrovascular disease, hypertension, nephropathy, current smoker, waist-hip-ratio, HbA1c, triglycerides, 
high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. HR, hazard ratio; CI, confidence 
interval; SD, standard deviation 
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Table 5: Relationship between baseline alanine aminotransferase (ALT) as a linear variable 

and gamma glutamyltransferase (GGT) in quintiles and time to first cardiovascular event 

 

P HR 

95.0% CI for HR 

Lower Upper 

ALT as linear variable in adjusted model*     

 ALT per SD (per 13.2 U/L) 0.01 0.92 0.87 0.98 

GGT quintiles in adjusted model     

 GGT ≤19 U/L 0.10    

 GGT >19 and ≤26 U/L  1.13 0.95 1.35 

 GGT >26 and ≤33 U/L  1.28 1.07 1.54 

 GGT >33 and ≤49 U/L  1.10 0.91 1.32 

 GGT >49 U/L  1.10 0.91 1.33 

ALT (linear) and GGT (quintiles) in adjusted 
model and corrected for each other 

    

 ALT per SD (per 13.2 U/L) 0.003 0.90 0.84 0.97 

 GGT ≤19 U/L 0.04    

 GGT >19 and ≤26 U/L  1.16 0.97 1.38 

 GGT >26 and ≤33 U/L  1.34 1.11 1.61 

 GGT >33 and ≤49 U/L  1.18 0.98 1.43 

 GGT >49 U/L  1.24 1.01 1.52 

 

 * With adjustment for: assignment to treatment with fenofibrate and baseline age, sex, diabetes duration, 
known macrovascular disease, hypertension, nephropathy, current smoker, waist-hip-ratio, HbA1c, 
triglycerides, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. HR, hazard ratio; 
CI, confidence interval; SD, standard deviation 
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Figure Legends 

 

Figure 1 

Adjusted beta coefficients obtained by Cox regression analysis for A. alanine 

aminotransferase (ALT), and B. gamma-glutamyltransferase (GGT) by quintiles (using the 

median of each quintile on the x axis) with line of best fit illustrated on the ALT model. 

Models were adjusted for the pre-specified variables—assignment to treatment with 

fenofibrate and baseline characteristics: age, sex, diabetes duration, known macrovascular 

disease, hypertension, nephropathy, current smoker status, waist-hip ratio, HbA1c, 

triglyceride level, high-density lipoprotein cholesterol and low-density lipoprotein 

cholesterol. The 95%, 2-sided, confidence intervals were created using Plummer's method 

of constructing floating confidence intervals. Numbers refer to quintiles 1 to 5. HR, hazard 

ratio; U/L, units per litre. 

Figure 2 

Kaplan-Meier plots for time to first total cardiovascular event on study by A. alanine 

aminotransferase (ALT), and B. gamma-glutamyltransferase (GGT) category. Normal 

ALT, 8–41 U/L for women and 9–59 U/L for men. Normal GGT, 6–40 U/L for women and 

12–68 U/L for men. Log-rank P=0.001 for difference across categories for ALT and 

P=0.16 for difference across categories for GGT. HR, hazard ratio; RR, reference range. 


