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ABSTRACT
In a Fork-Join (FJ) queueing system an upstream fork sta-
tion splits incoming jobs into N tasks to be further processed
by N parallel servers, each with its own queue; the response
time of one job is determined, at a downstream join station,
by the maximum of the corresponding tasks’ response times.
This queueing system is useful to the modelling of multi-
service systems subject to synchronization constraints, such
as MapReduce clusters or multipath routing. Despite their
apparent simplicity, FJ systems are hard to analyze.

This paper provides the first computable stochastic bounds
on the waiting and response time distributions in FJ sys-
tems. We consider four practical scenarios by combining 1a)
renewal and 1b) non-renewal arrivals, and 2a) non-blocking
and 2b) blocking servers. In the case of non-blocking servers
we prove that delays scale as O(logN), a law which is known
for first moments under renewal input only. In the case of
blocking servers, we prove that the same factor of logN dic-
tates the stability region of the system. Simulation results
indicate that our bounds are tight, especially at high utiliza-
tions, in all four scenarios. A remarkable insight gained from
our results is that, at moderate to high utilizations, mul-
tipath routing “makes sense” from a queueing perspective
for two paths only, i.e., response times drop the most when
N = 2; the technical explanation is that the resequencing
(delay) price starts to quickly dominate the tempting gain
due to multipath transmissions.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; G.3 [Mathematics of Computing]: Probability
and Statistics

Keywords
Fork-Join queue; Performance evaluation; Parallel systems;
MapReduce; Multipath
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1. INTRODUCTION
The performance analysis of Fork-Join (FJ) systems re-

ceived new momentum with the recent wide-scale deploy-
ment of large-scale data processing that was enabled through
emerging frameworks such as MapReduce [12]. The main
idea behind these big data analysis frameworks is an elegant
divide and conquer strategy with various degrees of freedom
in the implementation. The open-source implementation of
MapReduce, known as Hadoop [37], is deployed in numerous
production clusters, e.g., Facebook and Yahoo [20].

The basic operation of MapReduce is depicted in Figure 1.
In the map phase, a job is split into multiple tasks that are
mapped to different workers (servers). Once a specific subset
of these tasks finish their executions, the corresponding re-
duce phase starts by processing the combined output from all
the corresponding tasks. In other words, the reduce phase is
subject to a fundamental synchronization constraint on the
finishing times of all involved tasks.

A natural way to model one reduce phase operation is by
a basic FJ queueing system with N servers. Jobs, i.e., the
input unit of work in MapReduce systems, arrive accord-
ing to some point process. Each job is split into N (map)
tasks (or splits, in the MapReduce terminology), which are
simultaneously sent to the N servers. At each server, each
task requires a random service time, capturing the variable
task execution times on different servers in the map phase.
A job leaves the FJ system when all of its tasks are served;
this constraint corresponds to the specification that the re-
duce phase starts no sooner than when all of its map tasks
complete their executions.

Concerning the execution of tasks belonging to different
jobs on the same server, there are two operational modes.
In the non-blocking mode, the servers are workconserving in
the sense that tasks immediately start their executions once
the previous tasks finish theirs. In the blocking mode, the
mapped tasks of a job simultaneously start their executions,
i.e., servers can be idle when their corresponding queues are
not empty. The non-blocking execution mode prevails in
MapReduce due to its conceivable efficiency, whereas the
blocking execution mode is employed when the jobtracker

(the node coordinating and scheduling jobs) waits for all
machines to be ready to synchronize the configuration files
before mapping a new job; in Hadoop, this can be enforced
through the coordination service zookeeper [37].

In this paper we analyze the performance of the FJ queue-
ing model in four practical scenarios by considering two
broad arrival classes (driven by either renewal or non-renewal
processes) and the two operational modes described above.
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Figure 1: Schematic illustration of the basic opera-
tion of MapReduce.

The key contribution, to the best of our knowledge, are the
first non-asymptotic and computable stochastic bounds on
the waiting and response time distributions in the most rel-
evant scenario, i.e., non-renewal (Markov modulated) job
arrivals and the non-blocking operational mode. Under all
scenarios, the bounds are numerically tight especially at high
utilizations. This inherent tightness is due to a suitable mar-
tingale representation of the underlying queueing system,
an approach which was conceived in [23] for the analysis of
GI/GI/1 queues, and which was recently extended to ad-
dress multi-class queues with non-renewal arrivals [11, 29].
The simplicity of the obtained stochastic bounds enables the
derivation of scaling laws, e.g., delays in FJ systems scale as
O(logN) in the number of parallel servers N , for both re-
newal and non-renewal arrivals, in the non-blocking mode;
more severe delay degradations hold in the blocking mode,
and, moreover, the stability region depends on the same fun-
damental factor of logN .

In addition to the direct applicability to the dimension-
ing of MapReduce clusters, there are other relevant types
of parallel and distributed systems such as production or
supply networks. In particular, by slightly modifying the
basic FJ system corresponding to MapReduce, the result-
ing model suits the analysis of window-based transmission
protocols over multipath routing. By making several sim-
plifying assumptions such as ignoring the details of specific
protocols (e.g., multipath TCP), we can provide a funda-
mental understanding of multipath routing from a queueing
perspective. Concretely, we demonstrate that sending a flow
of packets over two paths, instead of one, does generally re-
duce the steady-state response times. The surprising result
is that by sending the flow over more than two paths, the
steady-state response times start to increase. The technical
explanation for such a rather counterintuitive result is that
the logN resequencing price at the destination quickly dom-
inates the tempting gain in the queueing waiting time due
to multipath transmissions.

The rest of the paper is structured as follows. We first dis-
cuss related work on FJ systems and related applications.
Then we analyze both non-blocking and blocking FJ sys-
tems with renewal input in Section 3, and with non-renewal
input in Section 4. In Section 5 we apply the obtained re-
sults on the steady-state response time distributions to the
analysis of multipath routing from a queueing perspective.
Brief conclusions are presented in Section 6.

2. RELATED WORK
We first review analytical results on FJ systems, and then

results related to the two application case studies considered
in this paper, i.e., MapReduce and multipath routing.

The significance of the Fork-Join queueing model stems
from its natural ability to capture the behavior of many
parallel service systems. The performance of FJ queueing
systems has been subject of multiple studies such as [4, 26,
35, 21, 24, 5, 7]. In particular, [4] notes that an exact perfor-
mance evaluation of general FJ systems is remarkably hard
due to the synchronization constraints on the input and out-
put streams. More precisely, a major difficulty lies in finding
an exact closed form expression for the joint steady-state
workload distribution for the FJ queueing system. How-
ever, a number of results exist given certain constraints on
the FJ system. The authors of [14] provide the station-
ary joint workload distribution for a two-server FJ system
under Poisson arrivals and independent exponential service
times. For the general case of more than two parallel servers
there exists a number of works that provide approximations
[26, 35, 24, 25] and bounds [4, 5] for certain performance
metrics of the FJ system. Given renewal arrivals, [5] sig-
nificantly improves the lower bounds from [4] in the case of
heterogeneous phase-type servers using a matrix-geometric
algorithmic method. The authors of [24] provide an approx-
imation of the sojourn time distribution in a renewal driven
FJ system consisting of multiple G/M/1 nodes. They show
that the approximation error diminishes at extremal utiliza-
tions. Refined approximations for the mean sojourn time
in two-server FJ systems that take the first two moments
of the service time distribution are given in [21]; numerical
evidence is further provided on the quality of the approxi-
mation for different service time distributions.

The closest related work to ours is [4], which provides com-
putable lower and upper bounds on the expected response
time in FJ systems under renewal assumptions with Poisson
arrivals and exponential service times; the underlying idea
is to artificially construct a more tractable system, yet sub-
ject to stochastic ordering relative to the original one. Our
corresponding first order upper bound recovers the O(logN)
asymptotic behavior of the one from [4], and also reported
in [26] in the context of an approximation; numerically, our
bound is slightly worse than the one from [4] due to our
main focus on computing bounds on the whole distribution
(first order bounds are secondarily obtained by integration).
Moreover, we show that the O(logN) scaling law also holds
in the case of Markov modulated arrivals. In a parallel work
[22] to ours, the authors adopt a network calculus approach
to derive stochastic bounds in a non-blocking FJ system,
under a strong assumption on the input; for related con-
structions of such arrival models see [18].

Concerning concrete applications of FJ systems, in par-
ticular MapReduce, there are several empirical and analyt-
ical studies analyzing its performance. For instance, [39, 2]
aim to improve the system performance via empirically ad-
justing its numerous and highly complex parameters. The
targeted performance metric in these studies is the job re-
sponse time, which is in fact an integral part of the business
model of MapReduce based query systems such as [27] and
time priced computing clouds such as Amazon’s EC2 [1].
For an overview on works that optimize the performance
of MapReduce systems see the survey article [28]. Using
a similar idea as in [4], the authors of [32] derive asymp-



totic results on the response time distribution in the case
of renewal arrivals; such results are further used to under-
stand the impact of different scheduling models in the reduce
phase of MapReduce. Using the model from [32] the work
in [33] provides approximations for the number of jobs in
a tandem system consisting of a map queue and a reduce
queue in the heavy traffic regime. The work in [36] derives
approximations of the mean response time in MapReduce
systems using a mean value analysis technique and a closed
FJ queueing system model from [34].

Concerning multipath routing, the works [3, 17] provided
ground for multiple studies on different formulations of the
underlying resequencing delay problem, e.g., [16, 38]. Fac-
torization methods were used in [3] to analyze the disorder-
ing delay and the delay of resequencing algorithms, while the
authors of [17] conduct a queueing theoretic analysis of an
M/G/∞ queue receiving a stream of numbered customers.
In [16, 38] the multipath routing model comprises Bernoulli
thinning of Poisson arrivals overN parallel queueing stations
followed by a resequencing buffer. The work in [16] provides
asymptotics on the conditional probability of the resequenc-
ing delay conditioned on the end-to-end delay for different
service time distributions. For N = 2 and exponential in-
terarrival and service times, [38] derives a large deviations
result on the resequencing queue size. Our work differs from
these works in that we consider a model of the basic opera-
tion of window-based transmission protocols over multipath
routing, motivated by the emerging application of multipath
TCP [30]. We point out, however, that we do not model the
specific operation of any particular multipath transmission
protocol. Instead, we analyze a generic multipath trans-
mission protocol under simplifying assumptions, in order to
provide a theoretical understanding of the overall response
times comprised of both queueing and resequencing delays.

Relative to the existing literature, our key theoretical con-
tribution is to provide computable and non-asymptotic bounds
on the distributions of the steady-state waiting and response
times under both renewal and non-renewal input in FJ sys-
tems. The consideration of non-renewal input is particularly
relevant, given recent observations that job arrivals are sub-
ject to temporal correlations in production clusters. For
instance, [10, 19] report that job, respectively, flow arrival
traces in clusters running MapReduce exhibit various de-
grees of burstiness.

3. FJ SYSTEMS WITH RENEWAL INPUT
We consider a FJ queueing system as depicted in Figure 2.

Jobs arrive at the input queue of the FJ system according
to some point process with interarrival times ti between the
i and i + 1 jobs. Each job i is split into N tasks that are
mapped through a bijection to N servers. A task of job i
that is serviced by some server n requires a random service
time xn,i. A job leaves the system when all of its tasks finish
their executions, i.e., there is an underlying synchronization
constraint on the output of the system. We assume that the
families {ti} and {xn,i} are independent.

In the sequel we differentiate between two cases, i.e., a)
non-blocking and b) blocking servers. The first case corre-
sponds to workconserving servers, i.e., a server starts servic-
ing a task of the next job (if available) immediately upon
finishing the current task. In the latter case, a server that
finishes servicing a task is blocked until the corresponding
job leaves the system, i.e., until the last task of the cur-

job arrivals

…
.time

server 1

server N

Figure 2: A schematic Fork-Join queueing system
with N parallel servers. An arriving job is split into
N tasks, one for each server. A job leaves the FJ
system when all of its tasks are served. An arriving
job is considered waiting until the service of the last
of its tasks starts, i.e., when the previous job departs
the system.

rent job completes its execution. This can be regarded as
an additional synchronization constraint on the input of the
system, i.e., all tasks of a job start receiving service simulta-
neously. We will next analyze a) and b) for renewal arrivals.

3.1 Non-Blocking Systems
Consider an arrival flow of jobs with renewal interarrival

times ti, and assume that the waiting time of the first job
is w1 = 0. Given N parallel servers, the waiting time wj of
the jth job is defined as

wj = max

{
0, max
1≤k≤j−1

{
max
n∈[1,N ]

{
k∑
i=1

xn,j−i −
k∑
i=1

tj−i

}}}
,

(1)
for all j ≥ 2, where xn,j is the service time required by
the task of job j that is mapped to server n. We count
a job as waiting until its last task starts receiving service.
Similarly, the response times of jobs, i.e., the times until the
last corresponding tasks have finished their executions, are
defined as r1 = maxn xn,1 for the first job, and for j ≥ 2 as

rj = max
0≤k≤j−1

{
max
n∈[1,N ]

{
k∑
i=0

xn,j−i −
k∑
i=1

tj−i

}}
, (2)

where by convention
∑0
i=1 ti = 0; for brevity, we will denote

maxn := maxn∈[1,N ].
We assume that the task service times xn,j are indepen-

dent and identically distributed (iid). The stability condi-
tion for the FJ queueing system is given as E [x1,1] < E [t1].
By stationarity and reversibility of the iid processes xn,j
and tj , there exists a distribution of the steady-state wait-
ing time w and steady-state response time r, respectively,
which have the representations

w =D max
k≥0

{
max
n

{
k∑
i=1

xn,i −
k∑
i=1

ti

}}
(3)

and

r =D max
k≥0

{
max
n

{
k∑
i=0

xn,i −
k∑
i=1

ti

}}
, (4)

respectively. Here, =D denotes equality in distribution. Note
that the only difference in (3) and (4) is that for the latter
the sum over the xn,i starts at i = 0 rather than at i = 1.



The following theorem provides stochastic upper bounds
on w and r. The corresponding proof will rely on submartin-
gale constructions and the Optional Sampling Theorem (see
Lemma 6 in the Appendix).

Theorem 1. (Renewals, Non-Blocking) Given a FJ
system with N parallel non-blocking servers that is fed by
renewal job arrivals with interarrivals tj. If the task service
times xn,j are iid, then the steady-state waiting and response
times w and r are bounded by

P [w ≥ σ] ≤ Ne−θnbσ (5)

P [r ≥ σ] ≤ NE
[
eθnbx1,1

]
e−θnbσ , (6)

where θnb (with the subscript ‘nb’ standing for non-blocking)
is the (positive) solution of

E
[
eθx1,1

]
E
[
e−θt1

]
= 1 . (7)

We remark that the stability condition E [x1,1] < E [t1]
guarantees the existence of a positive solution in (7) (see
also [29]).

Proof. Consider the waiting time w. We first prove that
for each n ∈ [1, N ] the process

zn(k) = eθnb
∑k
i=1(xn,i−ti)

is a martingale with respect to the filtration

Fk := σ {xn,m, tm |m ≤ k, n ∈ [1, N ]} .

The independence assumption of xn,j and tj implies that

E [zn(k) | Fk−1] = E
[
eθnb

∑k
i=1(xn,i−ti)

∣∣∣Fk−1

]
= E

[
eθnb(xn,k−tk)

]
eθnb

∑k−1
i=1 (xn,i−ti)

= eθnb
∑k−1
i=1 (xn,i−ti)

= zn(k − 1) , (8)

under the condition on θnb from the theorem. Moreover,
zn(k) is obviously integrable by the condition on θnb from
the theorem, completing thus the proof for the martingale
property.

Next we prove that the process

z(k) = max
n

zn(k) (9)

is a submartingale w.r.t. Fk. Given the martingale property
of each of the zn and the monotonicity of the conditional
expectation we can write for j ∈ [1, N ]:

E
[
max
n

zn(k)
∣∣∣Fk−1

]
≥ E [zj(k) | Fk−1] = zj(k − 1) ,

where the inequality stems from maxn zn(k) ≥ zj(k) for j ∈
[1, N ] a.s., whereas the subsequent equality stems from the
martingale property (8) for zn(k) for all n ∈ [1, N ]. Hence
we can write

E [z(k) | Fk−1] ≥ max
n

zn(k − 1) = z(k − 1) , (10)

which proves the submartingale property.
To derive a bound on the steady-state waiting time dis-

tribution, let σ > 0 and define the stopping time

K := inf

{
k ≥ 0

∣∣∣∣∣max
n

k∑
i=1

(xn,i − ti) ≥ σ

}
, (11)

which is also the first point in time k where z(k) ≥ eθnbσ.
Note that with the representation of w from (3):

{K <∞} = {w ≥ σ} .

Now, using the Optional Sampling Theorem (see Lemma 6
from the Appendix) for submartingales with k ≥ 1:

N =
∑

n∈[1,N ]

E
[
eθnb

∑k
i=1(xn,i−ti)

]
≥ E

[
max
n

eθnb
∑k
i=1(xn,i−ti)

]
(12)

= E [z(k)] ≥ E [z(K ∧ k)] ≥ E [z(K)1K<k]

≥ eθnbσP [K < k] ,

where we used the condition on θnb from the theorem in
the first line, the union bound in the second line, and the
submartingale property in the third line. In the last line we
used the definition of the stopping time K; note that we use
the notation K ∧ n := min{K,n}. The proof completes by
letting k →∞.

For the response time r, define the processes

z̃n(k) = eθnb(
∑k
i=0 xn,i−

∑k
i=1 ti) ,

which differs from the zn only in the range of the sum of the
service times xn,i. Then we proceed as for the derivation of
the bound on the waiting time w. The only difference in the
derivation is that inequality (12) translates to

NE
[
eθnbx1,1

]
≥ E

[
max
n

eθnb(
∑k
i=0 xn,i−

∑k
i=1 ti)

]
.

Fixing the right hand sides in (5) and (6) to ε, we find
that the corresponding quantiles on the waiting and response
times grow with the number of parallel serversN asO(logN),
a law which was already demonstrated in the special case
of Poisson arrival and exponential service times, and for
first moments, in [26], and more generally in [4]. This scal-
ing result is essential for dimensioning FJ systems such as
MapReduce computing clusters, as it explains the impact of
a MapReduce server pool size N on the job waiting/response
times.

We note that the bound in Theorem 1 can be computed
for different arrival and service time distributions as long as
the MGF (moment generating function) and Laplace trans-
form from (7) are computable. Given a scenario where the
job interarrival process and the task size distributions in a
MapReduce cluster are not known a priori, estimates of the
corresponding MGF and Laplace transforms can be obtained
using recorded traces, e.g., using the method from [15].

Next we illustrate two immediate applications of Theo-
rem 1.

Example 1: Exponentially distributed interarrival and
service times
Consider that the interarrival times ti and service times xn,i
are exponentially distributed with parameters λ and µ, re-
spectively; note that when N = 1 the system corresponds
to the M/M/1 queue. The corresponding stability condi-
tion becomes µ > λ. Using Theorem 1, the bounds on the
steady-state waiting and response time distributions are

P [w ≥ σ] ≤ Ne−(µ−λ)σ (13)
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Figure 3: Bounds on the waiting time distributions vs. simulations (renewal input): (a) the non-blocking
case (13) and (b) the blocking case (22). The system parameters are N = 20, µ = 1, and three utilization levels
ρ = {0.9, 0.75, 0.5} (from top to bottom). Simulations include 100 runs, each accounting for 107 slots.

and

P [r ≥ σ] ≤ N

ρ
e−(µ−λ)σ , (14)

where the exponential decay rate µ − λ follows by solving
µ
µ−θ

λ
λ+θ

= 1, i.e., the instantiation of (7).
Next we briefly compare our results to the existing bound

on the mean response time from [4], given as

E [r] ≤ 1

µ− λ

N∑
n=1

1

n
. (15)

By integrating the tail of (14) we obtain the following
upper bound on the mean response time

E [r] ≤ log(N/ρ) + 1

µ− λ .

Compared to (15), our bound exhibits the same logN scal-
ing law but is numerically slightly looser; asymptotically in
N , the ratio between the two bounds converges to one. A
key technical reason for obtaining a looser bound is that we
mainly focus on deriving bounds on distributions; through
integration, the numerical discrepancies accumulate.

For the numerical illustration of the tightness of the bounds
on the waiting time distributions from (13) we refer to Fig-
ure 3.(a); the numerical parameters and simulation details
are included in the caption.

Example 2: Exponentially distributed interarrival times
and constant service times
We now consider the case of iid exponentially distributed in-
terarrival times ti with parameter λ, and deterministic ser-
vice times xn,i = 1/µ, for all i ≥ 0 and n ∈ [1, N ]; note that
when N = 1 the system corresponds to the M/D/1 queue.

The condition on the asymptotic decay rate θnb from The-
orem 1 becomes

λ

λ+ θnb
= e
− θnb

µ ,

which can be numerically solved; upper bounds on the wait-
ing and response time distributions follow then immediately
from Theorem 1.

3.2 Blocking Systems
Here we consider a blocking FJ queueing system, i.e., the

start of each job is synchronized amongst all servers. We
maintain the iid assumptions on the interarrival times ti
and service times xn,i. The waiting time and response time
for the jth job can then be written as

wj = max

{
0, max

1≤k≤j−1

{
k∑
i=1

max
n

xn,j−i −
k∑
i=1

tj−i

}}

rj = max
0≤k≤j−1

{
k∑
i=0

max
n

xn,j−i −
k∑
i=1

tj−i

}
.

Note that the only difference to (1) and (2) is that the max-
imum over the number of servers now occurs inside the sum.

It is evident that the blocking system is more conservative
than the non-blocking system in the sense that the wait-
ing time distribution of the non-blocking system is domi-
nated by the waiting time distribution of the blocking sys-
tem. Moreover, the stability region for the blocking system,
given by E [t1] > E [maxn xn,1], is included in the stabil-
ity region of the corresponding non-blocking system (i.e.,
E [t1] > E [x1,1]).

Analogously to (3), the steady-state waiting and response
times w and r have now the representations

w =D max
k≥0

{
k∑
i=1

max
n

xn,i −
k∑
i=1

ti

}
(16)

r =D max
k≥0

{
k∑
i=0

max
n

xn,i −
k∑
i=1

ti

}
. (17)

The following theorem provides upper bounds on w and r.

Theorem 2. (Renewals, Blocking) Given a FJ queue-
ing system with N parallel blocking servers that is fed by re-
newal job arrivals with interarrivals tj and iid task service
times xn,j. The distributions of the steady-state waiting and
response times are bounded by

P [w ≥ σ] ≤ e−θbσ (18)

P [r ≥ σ] ≤ E
[
eθbx1,1

]
e−θbσ ,



where θb (with the subscript ‘b’ standing for blocking) is the
(positive) solution of

E
[
eθmaxn xn,1

]
E
[
e−θt1

]
= 1 . (19)

Before giving the proof we note that, in general, (19) can
be numerically solved. Moreover, for small values of N , θb
can be analytically solved.

Proof. Consider the waiting time w. We proceed simi-
larly as in the proof of Theorem 1. Letting Fk as above, we
first prove that the process

y(k) = eθb
∑k
i=1(maxn xn,i−ti)

is a martingale w.r.t. Fk using a technique from [23]. We
write

E [y(k) | Fk−1] = E
[
eθb

∑k
i=1(maxn xn,i−ti)

∣∣∣Fk−1

]
= eθb

∑k−1
i=1 (maxn xn,i−ti)E

[
eθb(maxn xn,k−tk)

]
= eθb

∑k−1
i=1 (maxn xn,i−ti)

= y(k − 1) ,

where we used the independence and renewal assumptions
for xn,i and ti in the second line, and finally the condition
on θb from (19).

In the next step we apply the Optional Sampling Theorem
(37) to derive the bound from the theorem. We first define
the stopping time K by

K := inf

{
k ≥ 0

∣∣∣∣∣
k∑
i=1

(
max
n

xn,i − ti
)
≥ σ

}
. (20)

Recall that P [K <∞] = P [w ≥ σ]. We can next write for
every k ∈ N

1 = E [y(0)]

= E [y(K ∧ k)]

≥ E [y(K ∧ k)1K<k]

= E
[
eθb

∑K
i=1(maxn xn,i−ti)1K<k

]
≥ eθbσP [K < k] .

Taking k → ∞ completes the proof. The proof for the re-
sponse time r is analogous.

Example 3: Exponentially distributed interarrival and
service times
Consider interarrival and service times ti and xn,i that are
exponentially distributed with parameters λ and µ, respec-
tively. In [31] it was shown that

max
n

Ln =D

N∑
n=1

Ln
n

for iid exponentially distributed random variables Ln, so
that the stability condition E [t1] > E [maxn xn,1] becomes

1

λ
>

1

µ

N∑
n=1

1

n
. (21)

By applying Theorem 2, the bounds on the steady-state
waiting and response time distributions are

P [w ≥ σ] ≤ e−θbσ (22)

and

P [r ≥ σ] ≤ µ

µ− θb
e−θbσ ,

where θb can be numerically solved from the condition

N∏
n=1

nµ

nµ− θb
λ

λ+ θb
= 1 .

For quick numerical illustrations we refer back to Figure 3.(b).
The interesting observation is that the stability condition

from (21) depends on the number of servers N . In par-
ticular, as the right hand side grows in logN , the system
becomes unstable (i.e., waiting times are infinite) for suffi-
ciently large N . This shows that the optional blocking mode
from Hadoop should be judiciously enabled.

Example 4: Exponentially distributed interarrival and
constant times
If the service times are deterministic, i.e., xn,i = 1/µ for all
i ≥ 0 and n ∈ [1, N ], the representations of w and r from
(16) and (17) match their non-blocking counterparts from
(3) and (4) and hence the corresponding stability regions
and stochastic bounds are equal to those from Example 2.

4. FJ SYSTEMS WITH NON-RENEWAL
INPUT

In this section we consider the more realistic case of FJ
queueing systems with non-renewal job arrivals. This model
is particularly relevant given the empirical evidence that
clusters running MapReduce exhibit various degrees of bursti-
ness in the input [10, 19]. Moreover, numerous studies have
demonstrated the burstiness of Internet traces, which can
be regarded in particular as the input to multipath routing.

1 2

p

q
L1 L2

Figure 4: Markov modulating chain ck for the job
interarrival times.

We model the interarrival times ti using a Markov modu-
lated process. Concretely, consider a two-state modulating
Markov chain ck, as depicted in Figure 4, with a transition
matrix T given by

T =

(
1− p p
q 1− q

)
, (23)

for some values 0 < p, q < 1. In state i ∈ {1, 2} the in-
terarrival times are given by iid random variables Li with
distribution Li. Without loss of generality we assume that
L1 is stochastically smaller than L2, i.e.,

P [L1 ≥ t] ≤ P [L2 ≥ t] ,

for any t ≥ 0. Additionally, we assume that the Markov
chain ck satisfies the burstiness condition

p < 1− q , (24)



number of servers

pe
rc

en
til

e

ε = 10−4

ε = 10−3

ε = 10−2

0 5 10 15 20

0
10

20
30

40
50

60

(a) Impact of ε

number of servers

pe
rc

en
til

e

p + q = 0.1
p + q = 0.9

0 5 10 15 20

0
10

20
30

40
50

60

(b) Impact of the burstiness factor p+ q

Figure 5: The O(logN) scaling of waiting time percentiles wε for Markov modulated input (the non-blocking
case (25)). The system parameters are µ = 1, λ2 = 0.9, ρ = 0.75 (in both (a) and (b)) p = 0.1, q = 0.4 (in (a)),
three violation probabilities ε (in (a)), ε = 10−4 and only two burstiness parameters p + q (in (b)) (for visual
convenience). Simulations include 100 runs, each accounting for 107 slots.

i.e., the probability of jumping to a different state is less
than the probability of staying in the same state.

Subsequent derivations will exploit the following exponen-
tial transform of the transition matrix T defined as

Tθ :=

(
(1− p)E

[
e−θL1

]
p E

[
e−θL2

]
q E

[
e−θL1

]
(1− q)E

[
e−θL2

]) ,

for some θ > 0. Let Λ(θ) denote the maximal positive eigen-
value of Tθ, and the vector h = (h(1), h(2)) denote a cor-
responding eigenvector. By the Perron-Frobenius Theorem,
Λ(θ) is equal to the spectral radius of Tθ such that h can be
chosen with strictly positive components.

As in the case of renewal arrivals, we will next analyze
both non-blocking and blocking FJ systems.

4.1 Non-Blocking Systems
We first analyze a non-blocking FJ system fed with ar-

rivals that are modulated by a stationary Markov chain as
in Figure 4. We assume that the task service times xn,j are
iid and that the families {ti} and {xn,i} are independent.
Note that both the definition of wj from (1) and the repre-
sentation of the steady-state waiting time w in (3) remain
valid, due to stationarity and reversibility; the same holds
for the response times.

The next theorem provides upper bounds on the steady-
state waiting and response time distributions in the non-
blocking scenario with Markov modulated interarrivals.

Theorem 3. (Non-Renewals, Non-Blocking) Given
a FJ queueing system with N parallel non-blocking servers,
Markov modulated job interarrivals tj according to the Markov
chain depicted in Figure 4 with transition matrix (23), and
iid task service times xn,j. The steady-state waiting and re-
sponse time distributions are bounded by

P [w ≥ σ] ≤ Ne−θnbσ (25)

P [r ≥ σ] ≤ NE
[
eθnbx1,1

]
e−θnbσ , (26)

where θnb is the (positive) solution of

E
[
eθx1,1

]
Λ(θ) = 1 .

(Recall that Λ(θ) was defined as a spectral radius.)

We remark that the existence of a positive solution θnb is
guaranteed by the Perron-Frobenius Theorem, see, e.g., [29].

Proof. Consider the filtration

Fk := σ {xn,m, tm, cm |m ≤ k, n ∈ [1, N ]} ,

that includes information about the state ck of the Markov
chain. Now, we construct the process z(k) as

z(k) = h(ck)eθnb(maxn
∑k
i=1 xn,i−

∑k
i=1 ti)

=
(
eθnb(maxn

∑k
i=1 xn,i−kD)

)(
h(ck)eθnb(kD−

∑k
i=1 ti)

)
(27)

with the deterministic parameter

D := θ−1
nb log

(
E
[
eθnbx1,1

])
.

Note the similarity of z(k) to (9) except for the additional
function h. Roughly, the function h captures the correlation
structure of the non-renewal interarrival time process.

Next we show that both terms of (27) are submartingales.
In the first step we note that by the definition of D:

E
[
eθnb(

∑k
i=1 xn,i−kD)

∣∣∣Fk−1

]
= eθnb(

∑k−1
i=1 xn,i−(k−1)D) ,

hence, following the line of argument in (10) the left factor
of (27), which accounts for the additional maxn, is a sub-
martingale. The second step is similar to the derivations in
[9, 13]. First, note that

E
[
h(ck)eθnb(D−tk)

∣∣∣Fk−1

]
= eθnbDTθnbh(ck−1)

= eθnbDΛ(θnb)h(ck−1)

= h(ck−1) , (28)

where the last line is due to the definitions of D and θnb.

Now, multiplying both sides of (28) by eθnb((k−1)D−
∑k−1
i=1 ti)

proves the martingale and hence the submartingale property
of the right factor in (27). As the process z(k) is a product of
two independent submartingales, it is a submartingale itself
w.r.t. Fk.
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Figure 6: Bounds on the waiting time distributions vs. simulations (non-renewal input): (a) the non-blocking
case (25) and (b) the blocking case (31). The parameters are N = 20, µ = 1, p = 0.1, q = 0.4, λ1 ∈ {0.4, 0.72, 0.72}
and λ2 ∈ {0.9, 0.9, 1.62} leading to utilizations ρ ∈ {0.5, 0.75, 0.9}. Simulations include 100 runs, each accounting
for 107 slots.

Next we derive a bound on the steady-state waiting time
distribution using the Optional Stopping Theorem. Here
we use the stopping time K defined in (11). Recall that
P [K <∞] = P [w ≥ σ]. On the one hand we can write for
every k ∈ N

E [z(k)] ≥ E [z(K ∧ k)]

≥ E [z(K ∧ k)1K<k]

= E
[
max
n

h(cK)eθnb(
∑K
i=1 xn,i−

∑K
i=1 ti)1K<k

]
≥ eθnbσE [h(cK)1K<k]

= eθnbσE [h(cK) |K < k]P [K < k] . (29)

On the other hand we can upper bound the term

E [z(k)] =E
[
max
n

eθnb(
∑k
i=1 xn,i−kD)

]
E
[
h(ck)eθnb(kD−

∑k
i=1 ti)

]
≤NE [h(c1)] .

Letting k →∞ in (29) leads to

P [K <∞] ≤ E [h(c1)]

E [h(cK) |K <∞]
Ne−θnbσ . (30)

In Lemma 7 it is shown that the distribution of the ran-
dom variable (cK | K < k) is stochastically smaller than
the stationary distribution of the Markov chain. Given the
burstiness condition in (24) and that the function h is mono-
tonically decreasing [8], we can further upper bound the
prefactor in (30) as

E [h(c1)]

E [h(cK) |K <∞]
≤ 1 ,

which completes the proof. The proof for the response time
r is analogous.

Remark: Note that, if the burstiness condition (24) is not
fulfilled then we can still upper bound the prefactor in (30)
using the trivial upper bound

E [h(c1)]

E [h(cK) |K <∞]
≤ E [h(c1)]

mink h(ck)
.

Figure 5 displays the bounds on the waiting time per-
centiles wε, for various violation probabilities ε, in the FJ

system with non-renewal input. The bounds closely match
the corresponding simulation results, shown as box-plots,
while also exhibiting the O(logN) scaling behavior (which
can be also derived from both (25) and (26), as in Section 3).

4.2 Blocking Systems
Now we turn to the blocking variant of the FJ system that

is fed by the same non-renewal arrivals as in the previous
section. Without loss of generality we consider exponential
distributions Lm for m ∈ [1, 2]. The main result is:

Theorem 4. (Non-Renewals, Blocking) Given a FJ
system with N blocking servers, Markov modulated job inter-
arrivals tj, and iid task service times xn,j. The steady-state
waiting and response time distributions are bounded by

P [w ≥ σ] ≤ e−θbσ (31)

P [r ≥ σ] ≤ E
[
eθbx1,1

]
e−θbσ ,

where θb is the (positive) solution of

E
[
eθmaxn xn,1

]
Λ(θ) = 1 .

We remark that the positive solution for θb is guaranteed
under the stronger stability condition E [t1] > E [maxn xn,1]
and the Perron-Frobenius Theorem.

Proof. Let D := θ−1
b log E

[
eθbmaxn xn,1

]
and define the

process y by:

y(k) = h(ck)eθb(
∑k
i=1 maxn xn,i−

∑k
i=1 ti)

= (eθb(
∑k
i=1 maxn xn,i−kD))(h(ck)eθb(kD−

∑k
i=1 ti)) .

Similarly to the proofs of Theorem 2 and Theorem 3 one
can show that both the first and second factor of y are mar-
tingales, and hence y is a martingale. We use the stopping
time K in (20) and write

E [h(c1)] = E [y(0)]

≥ E [y(K ∧ k)]

≥ E [y(K ∧ k)1K<k]

= E
[
eθb(

∑K
i=1 maxn xn,i−

∑K
i=1 ti)h(cK)1K<k

]
≥ eθbσE [h(cK) |K <∞]P [K < k] .



Taking k →∞ we obtain the bound

P [K <∞] ≤ E [h(c1)]

E [h(cK) |K <∞]
e−θbσ ≤ e−θbσ ,

where we used Lemma 7 for the last inequality. The proof
for r is analogous.

A close comparison of the waiting time bound in the non-
renewal case (31) to the corresponding bound in the renewal
case (18) reveals that the decay factors θb depend on sim-
ilar conditions, whereby the MGF of the interarrival times
in (18) is replaced by the spectral radius of the modulat-
ing Markov chain in (31). Moreover, given the ergodicity
of the underlying Markov chain, the blocking system with
non-renewal input is subject to the same degrading stability
region (in logN) as in the renewal case (recall (21)).

For quick numerical illustrations of the tightness of the
bounds on the waiting time distributions in both the non-
blocking and blocking cases we refer to Figure 6.

So far we have contributed stochastic bounds on the steady-
state waiting and response time distributions in FJ systems
fed with either renewal and non-renewal job arrivals. The
key technical insight was that the stochastic bounds in the
non-blocking model grow as O(logN) in the number of par-
allel servers N under non-renewal arrivals, which extends
a known result for renewal arrivals [26, 4]. The same fun-
damental factor of logN was shown to drive the stability
region in the blocking model. A concrete application follows
next.

5. APPLICATION TO WINDOW-BASED
PROTOCOLS OVER MULTIPATH
ROUTING

In this section we slightly adapt and use the non-blocking
FJ queueing system from Section 3.1 to analyze the perfor-
mance of a generic window-based transmission protocol over
multipath routing. While this problem has attracted much
interest lately with the emergence of multipath TCP [30], it
is subject to a major difficulty due to the likely overtaking
of packets on different paths. Consequently, packets have
to additionally wait for a resequencing delay, which directly
corresponds to the synchronization constraint in FJ systems.
We note that the employed FJ non-blocking model is subject
to a convenient simplification, i.e., each path is modelled by
a single server/queue only.

As depicted in Figure 7, we consider an arrival flow con-
taining l batches of N packets, with l ∈ N, at the fork node
A. In practice, a packet as denoted here may represent an
entire train of consecutive datagrams. The incoming pack-
ets are sent over multiple paths to the destination node B,
where they need to be eventually reordered. We assume
that the batch size corresponds to the transmission window
size of the protocol, such that one packet traverses a single
path only. For example, the first path transmits the pack-
ets {1, N + 1, 2N + 1, . . . }, i.e., packets are distributed in a
round-robin fashion over the N paths. We also assume that
packets on each path are delivered in a (locally-)FIFO order,
i.e., there is no overtaking on the same path.

In analogy to Section 3.1, we consider a batch waiting until
its last packet starts being transmitted. When the transmis-
sion of the last packet of batch j begins, the previous batch
has already been received, i.e., all packets of the batch j− 1
are in order at node B.

…
.time

batch

time

batch

A B

Figure 7: A schematic description of the window-
based transmission over multipath routing; each
path is modelled as a single server/queue.

We are interested in the response times of the batches,
which are upper bounded by the largest response time of
the packets therein. The arrival time of a batch is defined
as the latest arrival time of the packets therein, i.e., when
the batch is entirely received. Formally, the response time of
batch j ∈ {lN + 1 | l ∈ N} can be given by slightly modifying
(2), i.e.,

rj = max
0≤k≤j−1

{
max
n

{
k∑
i=0

xn,j−i −
k∑
i=1

tn,j−i

}}
.

The corresponding steady-state response time has the mod-
ified representation

r =D max
k≥0

{
max
n

{
k∑
i=0

xn,i −
k∑
i=1

tn,i

}}
.

The modifications account for the fact that the packets of
each batch are asynchronously transmitted on the corre-
sponding paths (instead, in the basic FJ systems, the tasks
of each job are simultaneously mapped). In terms of no-
tations, the tn,i’s now denote the interarrival times of the
packets transmitted over the same path n, whereas xn,i’s
are iid and denote the transmission time of packet i over
path n; as an example, when the arrival flow at node A is
Poisson, tn,i has an Erlang EN distribution for all n and i.

We next analyze the performance of the considered mul-
tipath routing for both renewal and non-renewal input.

Renewal Arrivals
Consider first the scenario with renewal interarrival times.
Similarly to Section 3.1 we bound the distribution of the
steady-state response time r using a submartingale in the
time domain j ∈ {lN + 1|l ∈ N}. Following the same steps
as in Theorem 1, the process

zn(k) = eθ(
∑k
i=0 xn,i−

∑k
i=1 tn,i)

is a martingale under the condition

E
[
eθx1,1

]
E
[
e−θt1,1

]
= 1 ,

where we used the filtration

Fk := σ{xn,m, tn,m|m ≤ k, n ∈ [1, N ]} .



Note that E
[
e−θt1,1

]
denotes the Laplace transform of the

interarrival times of packets transmitted over each path.
The proof that maxn zn(k) is a submartingale follows a sim-
ilar argument as in (10). Hence, we can bound the distribu-
tion of the steady-state response time as

P [r ≥ σ] ≤ NE
[
eθx1,1

]
e−θσ , (32)

with the condition on θ from above.

Non-Renewal Arrivals
Next, consider a scenario with non-renewal interarrival times
ti of the packets arriving at the fork node A in Figure 7,
as described in Section 4. On every path n ∈ [1, N ] the
interarrivals are given by a sub-chain (cn,k)k that is driven
by the N -step transition matrix TN = (αi,j)i,j for T given in
(23). Similarly as in the proof of Theorem 3, we will use an
exponential transform (TN )θ of the transition matrix that
describes each path n, i.e.,

(TN )θ :=

(
α1,1β1 α1,2β2
α2,1β1 α2,2β2

)
,

with αi,j defined above and β1, β2 being the elements of a
vector β of conditional Laplace transforms of N consecutive
interarrival times ti. The vector β is given by

β :=

(
β1
β2

)
=


E
[
e−θ

∑N
i=1 ti

∣∣∣ c1 = 1
]

E
[
e−θ

∑N
i=1 ti

∣∣∣ c1 = 2
]
 ,

and can be computed given the transition matrix T from
(23) via an exponential row transform [9] (Example 7.2.7)
denoted by

T̃θ :=

(1− p)E
[
e−θL1

]
pE
[
e−θL1

]
qE
[
e−θL2

]
(1− q)E

[
e−θL2

]
 ,

yielding β = (T̃θ)
N

(
1
1

)
.

Denote Λ(θ) and h = (h(1), h(2)) as the maximal positive
eigenvalue of the matrix (TN )θ and the corresponding right
eigenvector, respectively. Mimicking the proof of Theorem
3, one can show for every path n that the process

zn(k) = h(cn,k)eθ(
∑k
i=0 xn,i−

∑k
i=1 tn,i)

is a martingale under the condition on (positive) θ

E
[
eθx1,1

]
Λ(θ) = 1 . (33)

Given the martingale representation of the processes zn(k)
for every path n, the process

z(k) = max
n

zn(k)

is a submartingale following the line of argument in (10). We
can now use (30) and the remark at the end of Section 4.1
to bound the distribution of the steady-state response time
r as

P [r ≥ σ] ≤ E [h(c1,1)]

h(2)
NE

[
eθx1,1

]
e−θσ , (34)

where we also used that h is monotonically decreasing and
θ as defined in (33).
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Figure 8: Multipath routing reduces the average
batch response time when R̃N < 1; smaller R̃N cor-
responds to larger reductions. Baseline parameter
µ = 1 and non-renewal parameters: p = 0.1, q = 0.4,
λ1 = {0.39, 0.7, 0.88}, λ2 = 0.95, yielding the utilizations
ρ = {0.5, 0.75, 0.9} (from top to bottom).

As a direct application of the obtained stochastic bounds
(i.e., (32) and (34)), consider the problem of optimizing the
number of parallel paths N subject to the batch delay (ac-
counting for both queueing and resequencing delays). More
concretely, we are interested in the number of paths N min-
imizing the overall average batch delay. Note that the path
utilization changes with N as

ρ =
λ

Nµ
,

since each path only receives 1
N

of the input. In other words,
the packets on each path are delivered much faster with in-
creasing N , but they are subject to the additional resequenc-
ing delay (which increases as logN as shown in Section 3.1).

To visualize the impact of increasing N on the average
batch response times we use the ratio

R̃N :=
E [rN ]

E [r1]
,

where, with abuse of notation, E [rN ] denotes a bound on
the average batch response time for some N , and E [r1] de-
notes the corresponding baseline bound for N = 1; both
bounds are obtained by integrating either (32) or (34) for
the renewal and the non-renewal case, respectively.

In the renewal case, with exponentially distributed inter-
arrival times with parameter λ, and homogenous paths/servers
where the service times are exponentially distributed with
parameter µ, we obtain

R̃N =

(
log(Nµ/(µ− θ)) + 1

log(1/ρ) + 1

)(
µ− λ
θ

)
, (35)

where θ is the solution of

µ

µ− θ

(
λ

λ+ θ

)N
= 1 .

In the non-renewal case we obtain the same expression for

R̃N as in (35) except for the additional prefactor E[h(c1(1))]
h(2)

prior to N ; moreover, θ is the implicit solution from (33).

Figure 8 illustrates R̃N as a function of N for several uti-
lization levels ρ for both renewal (a) and non-renewal (b)



input; recall that the utilization on each path is ρ
N

. In both
cases, the fundamental observation is that at small utiliza-
tions (i.e., roughly when ρ ≤ 0.5), multipath routing in-
creases the response times. In turn, at higher utilizations,
response times benefit from multipath routing but only for
2 paths. While this result may appear as counterintuitive,
the technical explanation (in (a)) is that the waiting time
in the underlying EN/M/1 queue quickly converges to 1

µ
,

whereas the resequencing delay grows as logN ; in other
words, the gain in the queueing delay due to multipath rout-
ing is quickly dominated by the resequencing delay price.

6. CONCLUSIONS
In this paper we have provided the first computable and

non-asymptotic bounds on the waiting and response time
distributions in Fork-Join queueing systems. We have ana-
lyzed four practical scenarios comprising of either workcon-
serving or non-workconserving servers, which are fed by ei-
ther renewal or non-renewal arrivals. In the case of workcon-
serving servers, we have shown that delays scale as O(logN)
in the number of parallel servers N , extending a related scal-
ing result from renewal to non-renewal input. In turn, in the
case of non-workconserving servers, we have shown that the
same fundamental factor of logN determines the system’s
stability region. Given their inherent tightness, our results
can be directly applied to the dimensioning of Fork-Join sys-
tems such as MapReduce clusters and multipath routing. A
highlight of our study is that multipath routing is reasonable
from a queueing perspective for two routing paths only.
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APPENDIX
We assume throughout the paper that all probabilistic ob-
jects are defined on a common filtered probability space(
Ω,A, (Fn)n ,P

)
. All processes (Xn)n are assumed to be

adapted, i.e., for each n ≥ 0, the random variable Xn is
Fn-measurable.

Definition 5. (Martingale) An integrable process (Xn)n
is a martingale if and only if for each n ≥ 1

E [Xn | Fn−1] = Xn−1 . (36)

Further, X is said to be a sub-(super-)martingale if in (36)
we have ≥ (≤) instead of equality.

The key property of (sub, super)-martingales that we use in
this paper is described by the following lemma:

Lemma 6. (Optional Sampling Theorem) Let (Xn)n
be a martingale, and K a bounded stopping time, i.e., K ≤ n
a.s. for some n ≥ 0 and {K = k} ∈ Fk for all k ≤ n. Then

E [X0] = E [XK ] = E [Xn] . (37)

If X is a sub-(super)-martingale, the equality sign in (37) is
replaced by ≤ (≥).

Proof. See, e.g., [6].

Note that for any (possibly unbounded) stopping time K,
the stopping time K∧n is always bounded. We use Lemma 6
with the stopping times K∧n in the proofs of Theorems 1 –
4.

Lemma 7. Let ck be the Markov chain from Figure 4 and
K be the stopping time from (11). Then the distribution of
(cK | K <∞) is stochastically smaller than the steady-state
distribution of ck, i.e.,

P [cK = 2 | K <∞] ≤ P [c1 = 2] ,

or, equivalently,

E [h(cK) |K <∞] ≥ E [h(ck)] ,

for all monotonically decreasing functions h on {1, 2}.

Proof. Using Bayes’ rule and the stationarity of the pro-
cess ck, it holds:

P [cK = 2 | K <∞] =

∞∑
k=1

P [ck = 2 | K = k]P [K = k]

=

∞∑
k=1

P [K = k | ck = 2]P [ck = 2]

= P [c1 = 2]

∞∑
k=1

P [K = k | ck = 2] .

Since L1 is stochastically smaller than L2, we have for any
k ≥ 1

P[K = k | ck = 2]

= P

[
tk≤max

n

k∑
i=1

xn,i−
k−1∑
i=1

ti−σ,max
n

k−1∑
i=1

(xn,i−ti) < σ

∣∣∣∣ck=2

]

≤ P

[
tk≤max

n

k∑
i=1

xn,i−
k−1∑
i=1

ti−σ,max
n

k−1∑
i=1

(xn,i−ti) < σ

]
= P [K = k] .

Hence
∑∞
k=1 P [K = k | ck = 2] ≤ 1, which completes the

proof.


