11 research outputs found

    On the application of Two-Photon Absorption for Laser Fault Injection attacks

    Get PDF
    Laser Fault Injection (LFI) is considered to be the most powerful semiinvasive fault injection method for implementation attacks on security devices. In this work we discuss for the first time the application of the nonlinear Two-Photon Absorption (TPA) effect for the purpose of LFI. Though TPA is an established technique in other areas, e.g. fluorescence microscopy, so far it did not receive any attention in the field of physical attack methods on integrated circuits. We show that TPA has several superior properties over the regular linear LFI method. The TPA effect allows to work on non-thinned devices without increasing the induced energy and hence the stress on the device. In contrast to regular LFI, the nonlinearity of the TPA effect leads to increased precision due to the steeper descent in intensity and also a vertically restricted photoelectric effect. By practical experiments, we demonstrate the general applicability of the method for a specific device and that unlike a regular LFI setup, TPA-LFI is capable to inject faults without triggering a latch-up effect. In addition we discuss the possible implications of TPA-LFI on various sensor-based countermeasures

    Bemessung von Flachstürzen

    No full text

    Water jet space charge spectroscopy: route to direct measurement of electron dynamics for organic systems in their natural environment

    No full text
    The toolbox for time-resolved direct measurements of electron dynamics covers a variety of methods. Since the experimental effort is increasing rapidly with achievable time resolution, there is an urge for simple and robust measurement techniques. Within this paper prove-of-concept experiments and numerical simulations are utilized to investigate the applicability of a new setup for the generation of ultrashort electron pulses in the energy range of 300 eV up to 1.6 keV. The experimental approach combines an in-vacuum liquid microjet and a few-cycle femtosecond laser system, while the threshold for electron impact ionization serves as a gate for the effective electron pulse duration. The experiments prove that electrons in the keV regime are accessible and that the electron spectrum can be easily tuned by laser intensity and focal position alignment with respect to the water jet. Numerical simulations show that a sub-picosecond temporal resolution is achievable

    On the application of Two-Photon Absorption for Laser Fault Injection attacks: Pushing the physical boundaries for Laser-based Fault Injection

    No full text
    Laser Fault Injection (LFI) is considered to be the most powerful semiinvasive fault injection method for implementation attacks on security devices. In this work we discuss for the first time the application of the nonlinear Two-Photon Absorption (TPA) effect for the purpose of LFI. Though TPA is an established technique in other areas, e.g. fluorescence microscopy, so far it did not receive any attention in the field of physical attack methods on integrated circuits. We show that TPA has several superior properties over the regular linear LFI method. The TPA effect allows to work on non-thinned devices without increasing the induced energy and hence the stress on the device. In contrast to regular LFI, the nonlinearity of the TPA effect leads to increased precision due to the steeper descent in intensity and also a vertically restricted photoelectric effect. By practical experiments, we demonstrate the general applicability of the method for a specific device and that unlike a regular LFI setup, TPA-LFI is capable to inject faults without triggering a latch-up effect. In addition we discuss the possible implications of TPA-LFI on various sensor-based countermeasures

    Ultrafast quantum control of ionization dynamics

    No full text
    The unprecedented combination of transient absorption and ion mass spectroscopy with attosecond resolution is used to study and control the complex multidimensional excitation and decay cascade of an ultrafast Auger process in krypton

    Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib

    No full text
    Squamous cell carcinoma of the head and neck (HNSCC) is the tenth most common tumor entity in men worldwide. Nevertheless therapeutic options are mostly limited to surgery and radio-chemotherapy resulting in 5-year survival rates of around 50%. Therefore new therapeutic options are urgently needed. During the last years, targeting of receptor tyrosine kinases has emerged as a promising strategy that can complement standard therapeutical approaches. Here, we aimed at investigating if the receptor tyrosine kinase DDR2 is a targetable structure in HNSCC. DDR2 expression was assessed on a large HNSCC cohort (554 patients) including primary tumors, lymph node metastases and recurrences and normal mucosa as control. Subsequently, DDR2 was stably overexpressed in two different cell lines (FaDu and HSC-3) using lentiviral technology. Different tumorigenic properties such as proliferation, migration, invasion, adhesion and anchorage independent growth were assessed with and without dasatinib treatment using in-vitro cell models and in-vivo zebrafish xenografts. DDR2 was overexpressed in all tumor tissues when compared to normal mucosa. DDR2 overexpression led to increased migration, invasion, adhesion and anchorage independent growth whereas proliferation remained unaltered. Upon dasatinib treatment migration, invasion and adhesion could be inhibited in-vitro and in-vivo whereas proliferation was unchanged. Our data suggest treatment with dasatinib as a promising new therapeutic option for patients suffering from DDR2 overexpressing HNSCC. Since dasatinib is already FDA-approved we propose to test this drug in clinical trials so that patients could directly benefit from this new treatment option

    Ultrafast quantum control of ionization dynamics in krypton

    Get PDF
    Photoionization of atoms and molecules is a complex process and requires sensitive probes to explore the ultrafast dynamics. Here the authors combine transient absorption and photo-ion spectroscopy methods to explore and control the attosecond pulse initiated excitation, ionization and Auger decay in Kr atoms

    Subcellular localization of the human papillomavirus 16 E7 oncoprotein in CaSki cells and its detection in cervical adenocarcinoma and adenocarcinoma in situ

    Get PDF
    E7 is the major oncoprotein of high-risk human papillomaviruses (HPV) which causes cervical cancer. To date E7 oncoproteins have not been investigated in cervical adenocarcinoma. In this study we generated a rabbit monoclonal anti-HPV-16 E7 antibody, RabMab42-3, which recognizes a conformational epitope in the E7 carboxy-terminal zinc-finger resulting in a strong increase in the sensitivity for the detection of cell-associated HPV-16 E7 protein relative to conventional polyclonal anti-HPV-16 E7 antibodies. Using RabMab42-3, we show that the subcellular localization of endogenous HPV-16 E7 oncoprotein varies during the cell cycle in cervical cancer cells. Moreover, we demonstrate for the first time that the HPV-16 E7 oncoprotein is abundantly expressed in cervical adenocarcinoma in situ and adenocarcinoma, suggesting an important role of HPV-16 E7 for the development of these tumors. Our findings suggest that the HPV-16 E7 oncoprotein could be a useful marker for the detection of cervical adenocarcinoma and their precursors
    corecore