3,608 research outputs found

    On the statistical interpretation of optical rogue waves

    Full text link
    Numerical simulations are used to discuss various aspects of "optical rogue wave" statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral filtering influences the characteristics of the statistical distribution of peak power, and we contrast the statistics of the spectrally filtered SC with the statistics of both the peak power of the most red-shifted soliton in the SC and the maximum peak power across the full temporal field with no spectral selection. For the latter case, we show that the unfiltered statistical distribution can still exhibit a long-tail, but the extreme-events in this case correspond to collisions between solitons of different frequencies. These results confirm the importance of collision dynamics in supercontinuum generation. We also show that the collision-induced events satisfy an extended hydrodynamic definition of "rogue wave" characteristics.Comment: Paper accepted for publication in the European Physical Journal ST, Special Topics. Discussion and Debate: Rogue Waves - towards a unifying concept? To appear 201

    Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation

    Full text link
    Numerical simulations of the onset phase of continuous wave supercontinuum generation from modulation instability show that the structure of the field as it develops can be interpreted in terms of the properties of Akhmediev Breathers. Numerical and analytical results are compared with experimental measurements of spectral broadening in photonic crystal fiber using nanosecond pulsesComment: 22 pages, 6 figure

    Postoperative complications associated with external skeletal fixators in cats

    Get PDF
    OBJECTIVES: The objective of this study was to quantify complications associated with external skeletal fixators (ESFs) in cats and to identify potential risk factors. METHODS: A retrospective review of medical records and radiographs following ESF placement was performed. RESULTS: Case records of 140 cats were reviewed; fixator-associated complications (FACs) occurred in 19% of cats. The region of ESF placement was significantly associated with complication development. Complications developed most frequently in the femur (50%), tarsus (35%) and radius/ulna (33%). Superficial pin tract infection (SPTI) and implant failure accounted for 45% and 41% of all FACs, respectively. SPTI occurred more frequently in the femur, humerus and tibia, with implant failure more frequent in the tarsus. No association between breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, degree of fracture load sharing, and the incidence or type of FAC was identified. No association between region of placement, breed, age, sex, weight, fracture type (open vs closed), ESF classification, number of pins per bone segment, fracture load sharing and the time to complication development was identified. CONCLUSIONS AND RELEVANCE: Complication development is not uncommon in cats following ESF placement. The higher complication rate in the femur, tarsus and radius/ulna should be considered when reviewing options for fracture management. However, cats appear to have a lower rate of pin tract infections than dogs

    Occupancy Based Household Energy Disaggregation using Ultra Wideband Radar and Electrical Signature Profiles

    Get PDF
    Human behaviour and occupancy accounts for a substantial proportion of variation in the energy efficiency pro le of domestic buildings. Yet while people often claim that they would like to reduce their energy bills, rhetoric frequently fails to match action due to the effort involved in understand- ing and changing deeply engrained energy consumption habits. Here, we present and, through dedicated experiments, test in-house developed soft-ware to remotely identify appliance energy usage within buildings, using energy equipment which could be placed at the electricity meter location. Furthermore, we monitor and compare the occupancy of the location under study through Ultra-Wideband (UWB) radar technology and compare the resulting data with those received from the power monitoring software, via time synchronization. These signals when mapped together can potentially provide both occupancy and speci c appliances power consumption, which could enable energy usage segregation on a yet impossible scale as well as usage attributable to occupancy behaviour. Such knowledge forms the basis for the implementation of automated energy saving actions based on a households unique energy profi le

    Huygens principle based UWB microwave imaging method for skin cancer detection

    Get PDF
    In recent years, Ultra Wideband (UWB) technology has emerged as a promising alternative for use in a wide range of applications. One of the potential applications of UWB is in healthcare and imaging, motivated by its non-ionizing signals, low cost, low complexity, and its ability to penetrate through mediums. Moreover, the large bandwidth covered by UWB signals permits the very high resolution required in imaging experiments. In this paper, a recently introduced UWB microwave imaging technique based on the Huygens principle (HP), has been applied to multilayered skin model with an inclusion representing a tumor. The methodology of HP permits the capture of contrast such that different material properties within the region of interest can be discriminated in the final image, and its simplicity removes the need to solve inverse problems when forward propagating the waves. Therefore the procedure can identify and localize significant scatterers inside a multilayered volume. Validation of the technique through simulations on multilayered cylindrical model of the skin with inclusion representing the tumor has been performed

    Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation

    Full text link
    In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-infrared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 μm\mu m and a high nonlinear index of 1.13.1017^{-17}m2^{2}W1^{-1}. It has a zero-dispersion wavelength around 4.5 μm\mu m and, at this wavelength, a large birefringence of 6.104^{-4} and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 μm\mu m and 3.33-5.78 μm\mu m using femtosecond pumping at 4 μm\mu m and 4.53 μm\mu m, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schr\"odinger equations.Comment: 13 pages, 8 figure

    Fundamental noise limitations to supercontinuum generation in microstructure fiber

    Full text link
    Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.Comment: 16 pages with 6 figure

    Hydrodynamic Supercontinuum

    Get PDF
    We demonstrate experimentally multi-bound-soliton solutions of the Nonlinear Schr\"odinger equation (NLS) in the context of surface gravity waves. In particular, the Satsuma-Yajima N-soliton solution with N=2,3,4 is investigated in detail. Such solutions, also known as breathers on zero background, lead to periodic self-focussing in the wave group dynamics, and the consequent generation of a steep localized carrier wave underneath the group envelope. Our experimental results are compared with predictions from the NLS for low steepness initial conditions where wave-breaking does not occur, with very good agreement. We also show the first detailed experimental study of irreversible massive spectral broadening of the water wave spectrum, which we refer to by analogy with optics as the first controlled observation of hydrodynamic supercontinuum a process which is shown to be associated with the fission of the initial multi-soliton bound state into individual fundamental solitons similar to what has been observe in optics

    On the modulation instability development in optical fiber systems

    Full text link
    Extensive numerical simulations were performed to investigate all stages of modulation instability development from the initial pulse of pico-second duration in photonic crystal fiber: quasi-solitons and dispersive waves formation, their interaction stage and the further propagation. Comparison between 4 different NLS-like systems was made: the classical NLS equation, NLS system plus higher dispersion terms, NLS plus higher dispersion and self-steepening and also fully generalized NLS equation with Raman scattering taken into account. For the latter case a mechanism of energy transfer from smaller quasi-solitons to the bigger ones is proposed to explain the dramatical increase of rogue waves appearance frequency in comparison to the systems when the Raman scattering is not taken into account.Comment: 9 pages, 54 figure

    Influence of turbulence on the dynamo threshold

    Get PDF
    We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold. When the noise is at small (resp. large) scale, the dynamo threshold is decreased (resp. increased). For a large scale noise, a finite correlation time reinforces this effect
    corecore