1,014 research outputs found

    Beveled Projectile Points and Ballistics Technology

    Get PDF
    Explanations for beveled blade edges on projectile points have been debated in North America archaeology since the first systematic description of lithic assemblages in the nineteenth century. Debate has centered around two opposing perspectives. One views beveled edges as features of projectile points that cause them to spin during flight. The other views beveling as a product of edge resharpening that is done unifacially to conserve scarce resources. Here we use a fluid-dynamics model to simulate the effect beveling has on projectiles. Expectations derived from this modeling are evaluated using wind-tunnel experiments. Our findings indicate that beveling produces in-flight rotation that serves as a means of increasing accuracy in relatively low-velocity flight paths.

    Distribution and abundance of fish and crayfish in a Waikato stream in relation to basin area

    Get PDF
    The aim of this study was to relate the longitudinal distribution of fish and crayfish to increasing basin area and physical site characteristics in the Mangaotama Stream, Waikato region, North Island, New Zealand. Fish and crayfish were captured with two-pass removal electroshocking at 11 sites located in hill-country with pasture, native forest, and mixed land uses within the 21.6 km2 basin. Number of fish species and lineal biomass of fish increased with increasing basin area, but barriers to upstream fish migration also influenced fish distribution; only climbing and non-migratory species were present above a series of small waterfalls. Fish biomass increased in direct proportion to stream width, suggesting that fish used much of the available channel, and stream width was closely related to basin area. Conversely, the abundance of crayfish was related to the amount of edge habitat, and therefore crayfish did not increase in abundance as basin area increased. Densities of all fish species combined ranged from 17 to 459 fish 100 m-2, and biomass ranged from 14 to 206 g m-2. Eels dominated the fish assemblages, comprising 85-100% of the total biomass; longfinned eels the majority of the biomass at most sites. Despite the open access of the lower sites to introduced brown trout, native species dominated all the fish communities sampled

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Prioritization of fish communities with a view to conservation and restoration on a large scale European basin, the Loire (France)

    Get PDF
    The hierarchical organization of important sites for the conservation or the restoration of fish communities is a great challenge for managers, especially because of financial or time constraints. In this perspective, we developed a methodology, which is easy to implement in different locations. Based on the fish assemblage characteristics of the Loire basin (France), we created a synthetic conservation value index including the rarity, the conservation status and the species origin. The relationship between this new synthetic index and the Fish-Based Index allowed us to establish a classification protocol of the sites along the Loire including fish assemblages to be restored or conserved. Sites presenting disturbed fish assemblages, a low rarity index, few threatened species, and a high proportion of non-native species were considered as important for the restoration of fish biodiversity. These sites were found mainly in areas where the assemblages are typical of the bream zone, e.g. with a higher number of eurytopic and limnophilic species. On the contrary, important sites for conservation were defined as having an important conservation potential (high RI, a lot of threatened species, and few nonnatives fish species) and an undisturbed fish assemblage similar to the expected community if habitats are undisturbed. Important sites for conservation were found in the Loire basin’s medium reaches which host assemblages typical for the grayling and the barbell zones, e.g. with a higher number of rheophilic species. The synthetic conservation value index could be adapted and completed with other criteria according to management priorities and capacities

    Rapid identification of human muscle disease with fibre optic Raman spectroscopy

    Get PDF
    The diagnosis of muscle disorders (“myopathies”) can be challenging and new biomarkers of disease are required to enhance clinical practice and research. Despite advances in areas such as imaging and genomic medicine, muscle biopsy remains an important but time-consuming investigation. Raman spectroscopy is a vibrational spectroscopy application that could provide a rapid analysis of muscle tissue, as it requires no sample preparation and is simple to perform. Here, we investigated the feasibility of using a miniaturised, portable fibre optic Raman system for the rapid identification of muscle disease. Samples were assessed from 27 patients with a final clinico-pathological diagnosis of a myopathy and 17 patients in whom investigations and clinical follow-up excluded myopathy. Multivariate classification techniques achieved accuracies ranging between 71–77%. To explore the potential of Raman spectroscopy to identify different myopathies, patients were subdivided into mitochondrial and non-mitochondrial myopathy groups. Classification accuracies were between 74–89%. Observed spectral changes were related to changes in protein structure. These data indicate fibre optic Raman spectroscopy is a promising technique for the rapid identification of muscle disease that could provide real time diagnostic information. The application of fibre optic Raman technology raises the prospect of in vivo bedside testing for muscle diseases which would significantly streamline the diagnostic pathway of these disorders

    A Transdisciplinary Approach to Determining the Provenience of a Distorted, Pre-Columbian Skull Recovered in Rural Idaho

    Get PDF
    Transdisciplinary research involves cooperation, exchange of information, sharing of resources and integration of disciplines to achieve a common scientific goal. In this study, collaborators utilized tools and knowledge of materials science, anthropology, archaeology, geosciences and biology in an attempt to determine the provenience of skeletal remains of unknown origin. The exchange of ideas and skills along with the crossing of disciplines in this study sucessfully allowed the incorporation of expertise from many team members. This transdisciplinary approach to research provided a more comprehensive and detailed analysis than any one field alone could provide. An archaeological assessment of a human skull recovered in rural Idaho recognized cranial deformation and post-mortem application of a red pigment. A combination of scanning electron microscopy (SEM), x-ray fluorescence (XRF) and energy-dispersive x-ray spectroscopy (EDS) identified the major and trace elements present in the red post-mortem pigment as cinnabar and rare earth metals. Analysis via carbon and oxygen stable isotopes from teeth and bone to provided insight into the diet and habitat for distinct segments of the individual’s life, indicating a regional separation in early life versus late adulthood. Radiocarbon dating determined the approximate age of the skull to be between 600-700 years old and a forensic mtDNA assessmentcategorized a mitochondrial haplogroup for the remains as originating from the East African or Arabian Peninsula

    Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus

    Get PDF
    As pressure on coastal marine resources is increasing globally, the need to quantitatively assess vulnerable fish stocks is crucial in order to avoid the ecological consequences of stock depletions. Species of Sciaenidae (croakers, drums) are important components of tropical and temperate fisheries and are especially vulnerable to exploitation. The black-spotted croaker, Protonibea diacanthus, is the only large sciaenid in coastal waters of northern Australia where it is targeted by commercial, recreational and indigenous fishers due to its food value and predictable aggregating behaviour. Localised declines in the abundance of this species have been observed, highlighting the urgent requirement by managers for information on fine and broad-scale population connectivity. This study examined the population structure of P. diacanthus across northwestern Australia using three complementary methods: genetic variation in microsatellite markers, otolith elemental composition and parasite assemblage composition. The genetic analyses demonstrated that there were at least five genetically distinct populations across the study region, with gene flow most likely restricted by inshore biogeographic barriers such as the Dampier Peninsula. The otolith chemistry and parasite analyses also revealed strong spatial variation among locations within broad-scale regions, suggesting fine-scale location fidelity within the lifetimes of individual fish. The complementarity of the three techniques elucidated patterns of connectivity over a range of spatial and temporal scales. We conclude that fisheries stock assessments and management are required at fine scales (100's km) to account for the restricted exchange among populations (stocks) and to prevent localised extirpations of this species. Realistic management arrangements may involve the successive closure and opening of fishing areas to reduce fishing pressure

    The Neurocognitive Components of Pitch Processing: Insights from Absolute Pitch

    Get PDF
    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability

    The Neurocognitive Components of Pitch Processing: Insights from Absolute Pitch

    Get PDF
    The natural variability of pitch naming ability in the population (known as absolute pitch or AP) provides an ideal method for investigating individual differences in pitch processing and auditory knowledge formation and representation. We have demonstrated the involvement of different cognitive processes in AP ability that reflects varying skill expertise in the presence of similar early age of onset of music tuition. These processes were related to different regions of brain activity, including those involved in pitch working memory (right prefrontal cortex) and the long-term representation of pitch (superior temporal gyrus). They reflected expertise through the use of context dependent pitch cues and the level of automaticity of pitch naming. They impart functional significance to structural asymmetry differences in the planum temporale of musicians and establish a neurobiological basis for an AP template. More generally, they indicate variability of knowledge representation in the presence of environmental fostering of early cognitive development that translates to differences in cognitive ability

    Reef manta rays forage on tidally driven, high density zooplankton patches in Hanifaru Bay, Maldives

    Get PDF
    Manta rays forage for zooplankton in tropical and subtropical marine environments, which are generally nutrient-poor. Feeding often occurs at predictable locations where these large, mobile cartilaginous fishes congregate to exploit ephemeral productivity hotspots. Investigating the zooplankton dynamics that lead to such feeding aggregations remains a key question for understanding their movement ecology. The aim of this study is to investigate the feeding environment at the largest known aggregation for reef manta rays Mobula alfredi in the world. We sampled zooplankton throughout the tidal cycle, and recorded M. alfredi activity and behaviour, alongside environmental variables at Hanifaru Bay, Maldives. We constructed generalised linear models to investigate possible relationships between zooplankton dynamics, environmental parameters, and how they influenced M. alfredi abundance, behaviour, and foraging strategies. Zooplankton biomass changed rapidly throughout the tidal cycle, and M. alfredi feeding events were significantly related to high zooplankton biomass. Mobula alfredi switched from non-feeding to feeding behaviour at a prey density threshold of 53.7 mg dry mass m−3; more than double the calculated density estimates needed to theoretically meet their metabolic requirements. The highest numbers of M. alfredi observed in Hanifaru Bay corresponded to when they were engaged in feeding behaviour. The community composition of zooplankton was different when M. alfredi was feeding (dominated by copepods and crustaceans) compared to when present but not feeding (more gelatinous species present than in feeding samples). The dominant zooplankton species recorded was Undinula vulgaris. This is a large-bodied calanoid copepod species that blooms in oceanic waters, suggesting offshore influences at the site. Here, we have characterised aspects of the feeding environment for M. alfredi in Hanifaru Bay and identified some of the conditions that may result in large aggregations of this threatened planktivore, and this information can help inform management of this economically important marine protected area
    corecore