11 research outputs found

    Application of lactic acid bacteria for the biopreservation of meat products: A systematic review

    Get PDF
    Systematic ReviewThe increasing concern of consumers about food quality and safety and their rejection of chemical additives has promoted the breakthrough of the biopreservation field and the development of studies on the use of beneficial bacteria and their metabolites as potential natural antimicrobials for shelf life extension and enhanced food safety. Control of foodborne pathogens in meat and meat products represents a serious challenge for the food industry which can be addressed through the intelligent use of bio-compounds or biopreservatives. This article aims to systematically review the available knowledge about biological strategies based on the use of lactic acid bacteria to control the proliferation of undesirable microorganisms in different meat products. The outcome of the literature search evidenced the potential of several strains of lactic acid bacteria and their purified or semi- purified antimicrobial metabolites as biopreservatives in meat products for achieving longer shelf life or inhibiting spoilage and pathogenic bacteria, especially when combined with other technologies to achieve a synergistic effect.S

    Application of lactic acid bacteria for the biopreservation of meat products: A systematic review

    Get PDF
    .The increasing concern of consumers about food quality and safety and their rejection of chemical additives has promoted the breakthrough of the biopreservation field and the development of studies on the use of beneficial bacteria and their metabolites as potential natural antimicrobials for shelf life extension and enhanced food safety. Control of foodborne pathogens in meat and meat products represents a serious challenge for the food industry which can be addressed through the intelligent use of bio-compounds or biopreservatives. This article aims to systematically review the available knowledge about biological strategies based on the use of lactic acid bacteria to control the proliferation of undesirable microorganisms in different meat products. The outcome of the literature search evidenced the potential of several strains of lactic acid bacteria and their purified or semi-purified antimicrobial metabolites as biopreservatives in meat products for achieving longer shelf life or inhibiting spoilage and pathogenic bacteria, especially when combined with other technologies to achieve a synergistic effect.S

    X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium

    No full text
    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V5+ and V4+) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V5+, octahedral V4+, and proposed intracellular complexes of V5+ were detected simultaneously after addition of a physiologically relevant concentration of V5+ to the mycelium. A substantial fraction of the externally added V4+ remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by V-51 NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium

    Estimation of carbon dots amelioration of copper toxicity in maize studied by synchrotron radiation-FTIR

    No full text
    Carbon dots are biocompatible and non-toxic nanoparticles with chemical affinity to some heavy metals. Human activities increase soil pollution with copper. Cu is an essential microelement in plants, but excess can induce a harmful effects. In plant response to Cu, the cell wall plays an important role. This study aims to estimate possible amelioration effects of folic acid based CDs on Cu toxicity by studying the intracellular and cell wall compounds in maize (Zea mays L.) roots and leaves after 7 day-treatment in hydroponics. The sub-cellular compartmentalization and bio-macromolecular changes induced by 5 mu M Cu applied alone or with CDs (167 and 500 mg/L) were studied using the Synchrotron-based Fourier transformmicro-spectroscopy (SR-FTIR) combined with X-Ray photoelectron spectroscopy (XPS). Cu induced changes in content of cell wall polysaccharides, proteins, and lipids. The XPS detected CDs transport throughout the plants. The Cu/167CDs treatment reduced Cu concentration in the roots, possibly by complexation/trapping between the functional groups on CDs surface and Cu2+. Principal component analysis of FTIR spectra confirmed that Cu/500CDs treatment increased Cu adverse effects in most tissues but alleviated adverse Cu effects on cell wall polysaccharides in the root xylem, and on polysaccharides and proteins in leaf phloem and mesophyll

    Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast

    No full text
    This work was focused on the role of silicon (Si) in amelioration of manganese (Mn) toxicity caused by elevated production of hydroxyl radicals (center dot OH) in the leaf apoplast of cucumber (Cucumis sativus L.). The plants were grown in nutrient solutions with adequate (0.5 mu M) or excessive (100 mu M) Mn concentrations with or without Si being supplied. The symptoms of Mn toxicity were absent in the leaves of Si-treated plants subjected to excess Mn, although the leaf Mn concentration remained extremely high. The apoplastic concentration of free Mn2+ and H2O2 of high Mn-treated plants was significantly decreased by Si treatment. Si supply suppressed the Mn-induced increased abundance of peroxidase (POD) isoforms in the leaf apoplastic fluid, and led to a rapid suppression of guaiacol-POD activity under excess Mn. The spin-trapping reagent 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide was used to detect center dot OH by electron paramagnetic resonance spectroscopy. Although supplying Si markedly decreased the accumulation of center dot OH in the leaf apoplast with excess Mn, adding monosilicic acid to the Mn2+/H2O2 reaction mixture did not directly affect the Fenton reaction in vitro. The results indicate that Si contributes indirectly to a decrease in center dot OH in the leaf apoplast by decreasing the free apoplastic Mn2+, thus regulating the Fenton reaction. A direct inhibitory effect of Si on guaiacol-POD activity (demonstrated in vitro) may also contribute to decreasing the POD-mediated generation of center dot OH
    corecore