28 research outputs found

    Role of periostin and skeletal stem cells within periosteum during bone regeneration

    No full text
    Les troubles musculo-squelettiques représentent la deuxième cause d'invalidité dans le monde et des millions de personnes subissent une fracture chaque année. Bien que la régénération osseuse soit un processus efficace permettant à l'os de récupérer sa structure et ses fonctions initiales, 10% des fractures ne guérissent pas correctement et peuvent entraîner un retard de régénération ou une non-consolidation osseuse. Le processus de régénération osseuse repose sur l'activation de cellules souches squelettiques (CSS), dont les origines et les mécanismes d'action sont encore mal caractérisés. De nombreuses études se sont concentrées sur les cellules stromales de la moelle osseuse (CSM) comme source principale de CSS pour le processus de régénération osseuse endogène et les thérapies cellulaires. Cependant, notre laboratoire et d'autres équipes ont récemment montré que le périoste est une source majeure de cellules qui contribuent à la formation de cartilage et d’os dans le cal alors que les CSM ont une contribution minimale et restreinte au compartiment de moelle osseuse pendant la régénération. Le but de ce projet est de caractériser les cellules souches squelettiques du périoste et comparer leur potentiel de régénération in vitro et in vivo avec les cellules stromales de la moelle osseuse. Nous avons mis au point des cultures primaires de cellules issues du périoste (CPs) et de la moelle (CSMs) de souris. Les CPs et les CSMs expriment des marqueurs communs et peuvent se différencier dans les trois lignages mésenchymateux (ostéoblastes, adipocytes et chondrocytes) in vitro. In vitro les CPs ont un potentiel clonogénique et une croissance cellulaire plus élevés que les CSMs. Malgré l’origine embryonnaire commune des CPs et CSMs, les CPs n’ont pas les mêmes fonctions aux stades postnatal et adulte. Après transplantation au site de fracture, les CPs ont un meilleur potentiel d’intégration au centre du cal dans le cartilage et l’os comparé aux CSMs. Les CPs persistent dans le cal à long terme et peuvent reconstituer un pool de CPs dans le périoste nouvellement formé après régénération, permettant d’être mobilisées à nouveau après des blessures successives. Par des analyses transcriptomiques des CPs et CSMs isolées avant et après fracture, nous avons caractérisé les profiles moléculaires des CPs et des CSMs et mis en évidence une réponse à la blessure plus importante chez les CPs. Le gène Periostin (Postn) et d’autres gènes codant pour des protéines de la matrice extracellulaire liées à Postn sont surexprimées dans les CPs activées par la fracture. L’expression de POSTN est détectée dans le périoste et dans le cal pendant tout le processus de régénération osseuse. Les souris invalidées pour Postn ont un phénotype de régénération osseuse anormale marqué par la formation de fibrose et une absence de consolidation osseuse. Ce phénotype est dû à une déficience du périoste et des CPs chez les souris Postn mutantes. En absence de Postn, le reconstitution du périoste et du pools de CPs à long terme est abolie entraînant une incapacité du périoste mutant à participer à la réparation osseuse après une seconde blessure. En conclusion, ce travail a mis en évidence que le périoste contient une population de CSS avec un potentiel de régénération élevé pour la réparation osseuse endogène comparé aux CSMs. Nous montrons que Périostine est une protéine clé du périoste, régulant la capacité des CPs à répondre aux blessures et permettant de maintenir l’intégrité du périoste et le pool de CPs à long terme. Le périoste et les cellules souches du périoste pourraient donc être une meilleure cible pour augmenter la régénération osseuse cliniquement.Musculoskeletal disorders represent the second cause of disability worldwide. Among them, bone repair defects occur in 10% of patients that sustain a fracture causing delayed union or non-union. Bone regeneration is normally an efficient process allowing bone to recover its proper shape and functions, and relying on the activation of skeletal stem cells (SSCs), that are still poorly characterized. Numerous studies have concentrated on bone marrow stromal cells/skeletal stem cells (BMSCs) to understand the role of SSCs in bone regeneration and for cell-based therapies. Recently, our laboratory and others have shown that the periosteum is a major source of cells that contribute to cartilage and bone formation in the fracture callus while BMSC’s contribution to the endogenous repair process is minimal and restricted to the bone marrow compartment. Here, we aimed to characterize skeletal stem cells within periosteum and compare their in vitro and in vivo regenerative potential with BMSCs. We established primary cultures of periosteal cells (PCs) and BMSCs in mice and showed that PCs and BMSCs express similar markers by FACS and qRT-PCR and can differentiate into the three mesenchymal lineages (osteoblasts, adipocytes and chondrocytes) in vitro. We show that although PCs and BMSCs have common embryonic origins, PCs exhibit superior bone regenerative potential in mature bones with higher CFU-F activity, cell growth and migration capacity in vitro compared to BMSCs. By lineage tracing after transplantation at fracture sites in vivo, we show that PCs can better contribute to cartilage and bone and integrate long-term in the callus compared to BMSCs. Using a periosteum graft approach, we show that PCs can repopulate the periosteum after injury and are mobilized again after subsequent injuries to repair bone. Microarray analyses of PCs and BMSCs isolated from intact and injured tibias 3 days post fracture show an enhanced molecular response to injury of PCs. Periostin (Postn) and other genes encoding extracellular matrix (ECM) proteins linked to Postn were up-regulated in activated PCs. Postn expression was detected in the periosteum and the callus through all stages of bone regeneration and Postn deficient mice have impaired bone regeneration leading to fibrosis and non-union. This phenotype is due to a deficient periosteum and PCs as shown by in vitro and in vivo experiments. Moreover, the capacity of PCs to repopulate the newly formed periosteum and contribute to repair after a second injury is abolished in the absence of Periostin. In conclusion, this work shows that periosteum comprises SSCs with high bone regenerative potential for endogenous bone repair compared to BMSCs. We show that Periostin is a key ECM component of the periosteum regulating the ability of PCs to respond to injury, participate in skeletal repair and maintain the pool of PCs in the periosteum. SSCs within periosteum are therefore a promising target to augment bone regeneration clinically

    Explorer les mécanismes responsables du déclenchement de la phase catagène

    No full text
    Le follicule pileux est un micro-organe spécifique des mammifères responsable de la formation des poils. Au cours de la vie postnatale, le follicule pileux subit des phases récurrentes de croissance (anagène), régression (catagène) et repos (télogène). Les mécanismes cellulaires et moléculaires qui régulent le cycle pilaire rappellent certains des évènements qui ont lieu durant la morphogénèse. Bien qu’il y ait eu des avancées significatives dans la connaissance de la biologie du follicule pileux ; les mécanismes qui régulent le passage de la phase anagène à la phase catagène restent mystérieux. Fgf5, un membre de la famille des facteurs de croissance des fibroblastes, a été identifié comme un régulateur clé de la transition anagène-catagène. Les souris qui ne produisent pas de protéine Fgf5 active présentent un phénotype angora (go/go) caractérisé par une phase anagène plus longue et de longs poils. Cependant, les follicules pileux n’ayant pas Fgf5, entrent quand même dans la phase catagène, ce qui suggère que d’autres mécanismes contribuent au control du cycle pilaire. Des précédents résultats obtenus dans notre laboratoire ont établis une relation très proche entre le déclenchement de la phase catagène et le diamètre du poil. En utilisant le follicule de vibrisse comme modèle, nous avons confirmé ces résultats en démontrant, par in hybridation in situ, que l’expression du gène Fgf5 s’active dans les cellules de la gaine épithéliale externe localisées dans la région supra-bulbaire, progressivement l’expression de Fgf5 s’étend jusqu’à l’extrémité inférieur de la gaine épithéliale externe et s’éteint quelques jours avant le début de la phase catagène, de nouveau dans les cellules de la gaine épithéliale externe localisées dans la partie supra-bulbaire. Nous avons également démontré que le nombre de couche cellulaires dans la région du cortex du poil, augmente progressivement au cours du temps jusqu’à atteindre exactement le même nombre de couche, quelques jours avant la fin de la phase de croissance, chez la souris sauvage et la souris Fgf5LacZ/LacZ. Ces résultats confirment notre hypothèse établissant que Fgf5 ne déclenche pas de façon direct la phase catagène. Ensuite, nous avons démontré pour la première fois que les cellules progénitrices du cortex peuvent se diviser symétriquement. Ces divisions symétriques très rares se traduisent, quelques jours après, en la formation d’une nouvelle couche cellulaire dans le cortex du poil. Ces résultats appuient notre hypothèse qu’une boucle de régulation complexe impliquant, la gaine épithéliale externe, la papille dermique (qui exprime Fgfr1, le récepteur de Fgf5), la matrice et la région supra-bulbaire ; est indispensable au control du cycle pilaire. Nous avons ensuite démontré par qRT-PCR et des marquages immunologiques que plusieurs canaux mécano-sensitifs sont exprimés de façon spécifique dans ces régions d’intérêts. De plus, plusieurs gènes importants pour la signalisation, sont également exprimés dans ces régions. Tout cela mis ensemble nos résultats soutiennent l’hypothèse provocatrice que la croissance progressive de la largeur du poil induit une pression mécanique qui entraine l’activation de canaux mécano-sensitifs, qui vont à leur tour activer des voies de signalisation pour finalement contrôler l’expression de Fgf5 dans la région supra-bulbaire et ainsi contrôler le cycle pilaire.The hair follicle is a skin micro-organ specific to mammals and responsible for the formation of the hair. During postnatal life, the hair follicle undergoes recurrent phases of growth (anagen), regression (catagen) and rest (telogen) termed the hair cycle. The cellular and molecular mechanisms that regulate the hair cycle recapitulate some of the events occurring during morphogenesis. Despite significant advances in the understanding of biology of the hair follicle, the mechanisms regulating the switch from anagen to catagen remain mysterious. Fgf5, a member of the fibroblast growth factor family, has been proposed as a key regulator of the transition between anagen and catagen. Mice that do not produce active Fgf5 have an angora (go/go) phenotype characterized by an extended anagen phase and long hairs. Nevertheless, Fgf5 null hair follicles still enter catagen, suggesting that other mechanisms contribute to the control of the hair cycle. Previous work in the laboratory using Fgf5Lacz/LacZ null mice has unraveled a close connection between the onset of catagen and the diameter of the hair. Using the whisker follicle as a model system, we have confirmed these results and demonstrated by in situ hybridization that the expression of the Fgf5 gene is switched-on in the supra-bulbar region of the outer root sheath, progressively extends towards the lower extremity of the outer root sheath and is switched-off in the supra-bulbar region of the outer root sheath several days before the onset of catagen. We have also demonstrated that the number of cell layers in the hair cortex progressively increases with time to reach the exact same number a few days before the end of anagen in both wild-type and Fgf5 null follicles confirming our working hypothesis that Fgf5 does not directly trigger catagen. Next, we have demonstrated for the first time that the basal cortex-forming cells could divide symmetrically. These rare symmetrical divisions result in the formation of additional cell layers in the cortex. These results support our working hypothesis that a complex regulatory loop involving the outer sheath, the dermal papilla (that express Fgfr1, the Fgf5 receptor), the cortical matrix and the supra bulbar region is critical in controlling whisker growth. We have then demonstrated by q-RTPCR and immunostaining that several mechanosensitive channels are specifically expressed in the regions of interest. Moreover, several genes important for signaling are also expressed in these regions. Altogether, our results support the provocative hypothesis that the progressive increase in the width of the hair induces a mechanical pressure that leads to the activation of mechanosensitive channels, which in turn activate specific signaling pathways and ultimately result in the control of the expression of the Fgf5 gene in the supra-bulbar region of the outer root sheath and then in the control of the hair cycle

    Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin

    Get PDF
    The periosteum, a tissue lining the bone surface, and the bone marrow are known to contain bone-forming cells. Here the authors show that skeletal stem cells reside in the mouse periosteum, and that periosteal cells have common embryonic origins with bone marrow stromal/stem cells (BMSCs), but are better at bone repair and long-term integration than BMSCs
    corecore