512 research outputs found
Do you see what I mean?
Visualizers, like logicians, have long been concerned with meaning. Generalizing from MacEachren's overview of cartography, visualizers have to think about how people extract meaning from pictures (psychophysics), what people understand from a picture (cognition), how pictures are imbued with meaning (semiotics), and how in some cases that meaning arises within a social and/or cultural context. If we think of the communication acts carried out in the visualization process further levels of meaning are suggested. Visualization begins when someone has data that they wish to explore and interpret; the data are encoded as input to a visualization system, which may in its turn interact with other systems to produce a representation. This is communicated back to the user(s), who have to assess this against their goals and knowledge, possibly leading to further cycles of activity. Each phase of this process involves communication between two parties. For this to succeed, those parties must share a common language with an agreed meaning. We offer the following three steps, in increasing order of formality: terminology (jargon), taxonomy (vocabulary), and ontology. Our argument in this article is that it's time to begin synthesizing the fragments and views into a level 3 model, an ontology of visualization. We also address why this should happen, what is already in place, how such an ontology might be constructed, and why now
Oxidation and Cross-Linking in the Curing of Air-Drying Artists' Oil Paints
In this study, the chemistry of air-drying artist's oil paint curing and aging up to 24 months was studied. The objective is to improve our molecular understating of the processes that lead to the conversion of the fluid binder into a dry film and how this evolves with time, which is at the base of a better comprehension of degradation phenomena of oil paintings and relevant to the artists' paint manufacturing industry. To this aim, a methodological approach based on thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), gas chromatography-mass spectrometry (GC-MS), and analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC-MS) was implemented. Model paintings based on linseed oil and safflower oil (a drying and a semidrying oil, respectively) mixed with two historically relevant pigments - lead white (a through drier) and synthetic ultramarine blue (a pigment often encountered in degraded painting layers) - were investigated. The oil curing under accelerated conditions (80 °C under air flow) was followed by isothermal TG analysis. The oxygen uptake profiles were fit by a semiempiric equation that allowed to study the kinetics of the oil oxidation and estimate oxidative degradation. The DSC signal due to hydroperoxide decomposition and radical recombination was used to monitor the radical activity over time and to evaluate the stability of peroxides formed in the paint layers. GC-MS was performed at 7 and 24 months of natural aging to investigate the noncovalently cross-linked fractions and Py-GC-MS to characterize the whole organic fraction of the model paintings, including the cross-linked network. We show that the oil-pigment combination may have a strong influence on the relative degree of oxidation of the films formed with respect to its degree of cross-linking, which may be correlated with the literature on the stability of painting layers. Undocumented pathways of oxidation are also highlighted
The DSC monitoring of oil melting to follow the oil curing
The drying of an oil paint is due to the polyunsaturations of the oil in the binder. Polyunsaturated oils dry trough an autoxidation process in which the double bonds of linolenic and linoleic acids naturally react with the oxygen present in the atmosphere. The gradual conversion of the liquid oil through a soft gel to a rubbery solid occurs as a result of a multistep free radical chain reaction. During the propagation step, hydroperoxides are formed. A method frequently used to follow the oil curing is the DSC monitoring of the peroxide decomposition peak during time. Since the oil polymerization affects its crystallinity, we propose here an altemative method to asses the oil curing. The melting peak of linseed oil samples is measured at different times of curing and compared with the pro\ufb01le of the peroxide decomposition peak over time. The comparison shows that the two phenomena are strongly correlated and that, when the maximum of the peroxide content is reached, the melting peak disappears. The study of the DSC melting peak is therefore proposed as a valid alternative tool to monitor the curing of an oil paint
Cortical AAV-CNTF gene therapy combined with intraspinal mesenchymal precursor cell transplantation promotes functional and morphological outcomes after spinal cord injury in adult rats
Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations
The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo
Gastrointestinal (GI) nematodes are important disease-causing organisms, controlled primarily through treatment with synthetic drugs, but the efficacy of these drugs has declined due to widespread resistance, and hence new drugs, with different modes of action, are required. Some medicinal plants, used traditionally for the treatment of worm infections, contain cysteine proteinases known to damage worms irreversibly in vitro. Here we (i) confirm that papaya latex has marked efficacy in vivo against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, (ii) demonstrate the dosedependent nature of the activity (>90% reduction in egg output and 80% reduction in worm burden at the highest active enzyme concentration of 133 nmol), (iii) establish unequivocally that it is the cysteine proteinases that are the active principles in vivo (complete inhibition of enzyme activity when pre-incubated with the cysteine proteinase-specific inhibitor, E-64) and (iv) show that activity is confined to worms that are in the intestinal lumen. The mechanism of action was distinct from all current synthetic anthelmintics, and was the same as that in vitro, with the enzymes attacking and digesting the protective cuticle. Treatment had no detectable side-effects on immune cell numbers in the mucosa (there was no difference in the numbers of mast cells and goblet cells between the treated groups) and mucosal architecture (length of intestinal villi). Only the infected and untreated mice had much shorter villi than the other 3 groups, which was a consequence of infection and not treatment. Plant-derived cysteine proteinases are therefore prime candidates for development as novel drugs for the treatment of GI nematode infections
Microwave radiation can alter protein conformation without bulk heating
AbstractExposure to microwave radiation enhances the aggregation of bovine serum albumin in vitro in a time- and temperature-dependent manner. Microwave radiation also promotes amyloid fibril formation by bovine insulin at 60°C. These alterations in protein conformation are not accompanied by measurable temperature changes, consistent with estimates from field modelling of the specific absorbed radiation (15–20 mW kg−1). Limited denaturation of cellular proteins could explain our previous observation that modest heat-shock responses are induced by microwave exposure in Caenorhabditis elegans. We also show that heat-shock responses both to heat and microwaves are suppressed after RNA interference ablating heat-shock factor function
Artificial intelligence for dementia drug discovery and trials optimization
Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation
Artificial intelligence for dementia drug discovery and trials optimization
Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation
Aquazol as a binder for retouching paints. An evaluation through analytical pyrolysis and thermal analysis
Aquazol poly (2-ethyl-oxazoline) is a tertiary aliphatic amide, with physical and chemical properties that are exploited in a variety of ways, from pharmaceutical applications to the conservation of cultural heritage. In this study, we evaluated the use of Aquazol as a new binder for retouching paint in the restoration of artworks. Aquazol 500 admixed with various formulations of organic red pigments was used to prepare paint replicas which were artificially aged and investigated by a multi-analytical approach based on analytical pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS), and thermogravimetry (TG), complemented by FTIR and LIBS spectroscopy. This is the first study on the ageing phenomena of Aquazol 500 using analytical pyrolysis and thermogravimetric analysis. The influence of the pigments' components on the pyrolysis behavior of Aquazol was also investigated. The paint replicas did not show significant modifications during artificial ageing. This thus highlights the optimal properties of Aquazol 500 as a binder for retouching, in addition to its already established suitability as a filler or consolidant in the restoration of artifacts. Interestingly, when Aquazol 500 is used in formulations containing organic pigments, Aquazol-pigment interactions are observed, strongly depending on the pigment used
- …