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Abstract

Drug discovery and clinical trial design for dementia have historically been challeng-

ing. In part these challenges have arisen from patient heterogeneity, length of disease

course, and the tractability of a target for the brain. Applying big data analytics and

machine learning tools for drug discovery and utilizing them to inform successful clini-

cal trial design has the potential to accelerate progress. Opportunities arise atmultiple

stages in the therapy pipeline and the growing availability of large medical data sets

opens possibilities for big data analyses to answer key questions in clinical and thera-

peutic challenges. However, before this goal is reached, several challenges need to be

overcome and only a multi-disciplinary approach can promote data-driven decision-

making to its full potential. Herein we review the current state of machine learning

applications to clinical trial design and drug discovery, while presenting opportunities

and recommendations that can break down the barriers to implementation.
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1 INTRODUCTION

There is no cure for any form of dementia, and existing treatment

options do little to curb clinical progression. Drug discovery and devel-

opment processes involve many complex and lengthy steps—from

identification and validation of a target in which to test a drug, identifi-

cation of drug hits from a screening campaign, optimization of the lead

hit, to phase I–IV clinical trials. Despite decades of effort in identify-

ing suitable therapies, this process remains costly and time consuming,

and it often has a very high attrition rate.1 It is estimated that for

one approved drug that the total discovery and development costs are

over $5.7 billion, with a total duration of on average 13.5 years.2–4

The National Institutes of Health estimates that 80%–90% of research

projects fail before ever reaching human trials, whereas 95% of drugs

entering human trials fail.5 Drug trials for dementia have been no

exception. Over the past few decades, trials looking to modify disease

processes within Alzheimer’s disease (AD) have shown an even higher

attrition rate and are littered with costly failures.6 This has occurred

across all stages of the drug-development process, from safety signals

seen at phase I, II, and III to an absence of positive primary endpoints

seen in all but two recent pivotal trials.7,8 Nevertheless, these clinical

trial data sets are incredibly rich and highly characterized and have the

potential to inform future trial designs.

There are many potential causes of the high attrition rate in these

clinical trials, but the likely primary contributor is cohort heterogene-

ity. The heterogeneity of neurodegenerative diseases (NDs) within

clinical trials predicates differences in an individual’s drug response,

underlying disease pathology, length of disease course, and the tra-

jectory of the decline, among other factors. When contemplating trial

design and patient selection, a patient’s stage of disease along with

anticipated future decline are key factors for success.1,6,9 With trials

lasting only around 18 months in diseases that typically span decades,

matching the right subjects to the right compound at the right time

is fundamental to clinical trial outcomes and can characterize past

failures.9 By refining patient selection and homogenizing a patient’s

disease proteinopathies, there is an increased likelihood of an effi-

cacious outcome and subsequent regulatory approval, all of which is

achieved through reduction in erroneous patient-level responses to a

given therapy.

Traditionally drug hunters have preferenced targeted chemical

libraries and hypotheses around refined supportive evidence. The

growing availability of large multi-omics data sets comprising tissue

samples from a broad range of patients, in combination with clinical

data, provides a unique opportunity to generate biological hypothe-

ses in the human population for individual- and group-level targeted

therapies for all types of dementia.10

To aid these desired outcomes, there is an increasing realization

and growing consensus of the potential in using big data analytics and

machine learning (ML) tools for drug discovery and optimized clinical

trials.10,11 There has been a near exponential growth in the application

of thesemethods being usedwithin this field, as shown by Figure 1.

As part of a series that covers a broad range of aspects on artifi-

cial intelligence (AI) for NDs, this review discusses the challenges that

need to be overcome before this powerful approach can be fully har-

nessed in drug discovery and clinical trial optimization, including data

standardization, reproducibility between groups, and translatability

between experimental models and humans. We provide a multi-

disciplinary view of current developments in the use of data science

and AI at each stage of the drug discovery process: target discov-

ery and drug design, development, and repurposing. We identify three

key areas in which the use of data science and AI shows promise:

predicting success, patient stratification, and informing clinical trial

design. Finally, we provide recommendations on how a coordinated

effort frombiotechnology companies, academia, regulators, and health

care professionals can drive progress. International research commu-

nities such as the Deep Dementia Phenotyping (DEMON) Network

(www.demondementia.com) provide a platform for innovation to help

bridge these scientific fields and utilize focused working groups that

best exploitwhat eacharea canoffer tobetter informboth clinical trials

and drug discovery.

2 BIG DATA AND MACHINE LEARNING IN
TARGET DISCOVERY AND PRIORITIZATION

The challenges in developing novel therapeutics for dementia and

other NDs result from the paucity of novel, valid targets. This in

turn results from etiological heterogeneity, the multifaceted, often

polygenic nature of genetic risk and the complexity of the human

brain.12,13 A recent study has found that drug targets with genetic

support were twice as likely to improve approval likelihood of a new

drug candidate at early-stage clinical trials.14 The discovery of genetic

variants associated with the risk for neurological and neuropsychiatric

illness provides the opportunity to significantly enhance hypothesis-
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DOHERTY ET AL. 3

F IGURE 1 PubMed citations by year across Alzheimer’s disease,
dementias utilizingmachine learning or artificial intelligence
methodologies.

led drug discovery. Outside of NDs, this has been exemplified by

high-risk mutations in PCSK9, leading to a specific target for lowering

cholesterol being identified. Subsequent identification of individuals

with knockout mutations and benign lower low-density lipoprotein

(LDL) cholesterol has led to successful results in pivotal trials in the

development of both evolocumab and alirocumab as treatment for

hyperlipidemia.15,16 A recent study in schizophrenia utilized network

analyses on genome-wide association study (GWAS) loci and rare vari-

ation data to identify biological pathways and mechanisms in NDs, via

a combination of statistical genetic analysis approaches with chemoin-

formatic databases, and successfully identify potential new drugs and

drug targets.17

With recent advances in the data science and ML field in the last

decade, both academia and pharmaceutical companies have begun

implementing these approaches within their early drug discovery

process. The advances in genomic, transcriptomic, and proteomic

technologies, combined with the accumulation of patient and dis-

ease relevant big data sets, have also promoted analytics and ML

approaches for target identification. In an early study, Zhang and

colleagues18 used integrative network-based analysis to interrogate

gene expression data from post-mortem brain tissue samples. By rank-

order network structures for relevance to late-onset AD pathology,

the authors highlighted an immuneandmicroglia-specificmodule dom-

inated by genes involved in pathogen phagocytosis. Transmembrane

immune signalling adaptor TYROBP was also found to be a key regu-

lator of several microglial-specific genes highly expressed in AD brains

and a potential therapeutic target for late-onset AD. A genome-wide

AD-associated gene was recently identified using a support vector

machine (SVM)–based approach that integrated gene expression data

with human brain–specific gene network data.19 Further to this, net-

work analysis with peptides and/or mRNA transcripts have already

been used to identify additional potential AD targets.20,21 The combi-

nation of a high-dimensional genome-wide protein–protein interaction

network with a deep learning–based computational framework, has

also allowed drug-target prioritization and identification of potential

repositionable drugs for AD.22 Although still in its infancy, feature

RESEARCH INCONTEXT

1. Narrative Review: The authors reviewed the literature

using traditional (e.g., PubMed, Google Scholar) sources,

meeting abstracts, regulatory guidance documents, and

online articles. The authors have sought to have a

broad review across many neurodegenerative disorders,

with a particular focus on dementias and, in particular,

Alzheimer’s disease (AD).

2. Interpretation: Our review suggests that although artifi-

cial intelligence (AI) and machine learning (ML) methods

are increasing in their usage, with positive outcomes and

findings, further application to drug development and

clinical trials can be improved with more widespread

knowledge of how to apply them as well as strong con-

sensus guidelines on their implementation, thus allowing

for a reduction of risk associatedwith newmethodologies

within clinical development.

3. Future Directions: This article proposes suggestions on

howgreater adoptionmaybe achieved across biotechnol-

ogy companies, the wider pharmaceutical industry, and

academia, as well as general health care settings.

extraction from published literature using semantic searching or nat-

ural language processing (NLP) has started to be explored in target

discovery. IBM’s Watson was initially used to help identify additional

RNA-binding proteins that were subsequently validated by wet lab

experiments and has provided some potential novel targets for NDs.23

3 BIG DATA AND MACHINE LEARNING IN
DRUG DESIGN AND DEVELOPMENT

Virtual screening using ML is an important tool in the drug-

development process. It has the capacity to increase the yields of

potential drugs by conducting in silico searches over millions of

compounds.24 ThemainML algorithms that can be used in this context

are Bayesian, SVM, supervised learning, dimensionality reduction, arti-

ficial neural networks, and ensemble algorithms. TheBayesian learning

algorithms include naive Bayes, semi-naive Bayes, as well as Bayesian

networks (e.g., hidden Markov modeling) and represent input data as

feature vectors to plot them in space with the same dimensionality.

SVM algorithms construct an optimal hyperplane that dichotomizes

the data points. Supervised learning algorithms include instance-based

methods, decision tree algorithms, and distributed networks. Dimen-

sionality reduction algorithms, such as principal component analysis

and linear discriminant analysis, are used to reduce the number of vari-

ables by mapping data into a lower dimensional space and can be split

into feature selection and feature extraction. Artificial neural networks

are composed of nodes layered together to process input data in a
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4 DOHERTY ET AL.

process known as forward propagation. Typically, forward propagation

involves linear transformations and activation functions to process a

given information. Deep neural networks are artificial neural networks

with many layers and include recurrent neural networks, variational

autoencoders, and generative adversarial networks.

Bayesian learning algorithms are some of the most common

methodologies utilized in ML analyses. This has been employed to

examine the biological activities of small molecules to prioritize them

for experimental screening for AD25 and predict active molecules

against key targets for AD and Parkinson’s disease (PD) using the

multitarget-quantitative structure-activity relationships method.26–28

A Bayesian ML virtual screen of a large library of U.S. Food and Drug

Administration (FDA)–approved drugs and clinical candidates also

successfully identified several Gylcogen synthase kinase-3β (GSK3β)
inhibitors.29 Most recently, Google DeepMind has revolutionized the

fieldwith AlphaFold, enabling the prediction of three-dimensional (3D)

protein structure from their amino acid sequences, allowing for easier

and faster determination of target protein 3D structures, a critical step

in drug design.30

The application of ML is not limited only to small molecule–based

drug design and development. With monoclonal antibody therapeu-

tics becoming an increasingly popular approach to tackle traditionally

difficult targets, ML techniques have also started to be applied to

antibody design and optimization. In addition to 3D structure pre-

diction from protein sequences, ML has been applied successfully to

antibody–antigen interaction prediction and affinity maturation, often

directly from antibody sequences.31–33 Recently, a deep neural net-

work model was trained on a relatively small library (about 1 × 104

variants) thatwas based on the sequence alone of the therapeutic anti-

body trastuzumab to accurately predict antigen specificity.32 Such ML

approaches could allow in silico testing of a large number of antibody

sequences and significantly reduce both the financial and time costs of

therapeutic antibody lead optimization.

4 BIG DATA AND MACHINE LEARNING IN
DRUG REPURPOSING

Big data and ML have also started to play a useful role in drug-

repurposing opportunities. A network-based ML algorithm has been

used to identify several existing drugs of potential use for vascular

dementia,34 and a disease networkmodel has been proposed to repur-

pose drugs for use across dementias.35 A study that explored various

ML approaches/algorithms indicated that random forest was the best

model for the prediction of AD drugs and targets.36 More recently,

Rodriguez et al.37 developed an ML framework to evaluate the asso-

ciation between AD severity in neuropathology (determined by Braak

stage) and amolecularmechanism based on gene expression data from

human neuronal cell culture models. Although still requiring further

validation within in vitro and in vivo efficacy models, the authors sug-

gest that this offers a potential method for nominating candidates for

drug repurposing. The potential utilization of big data analytics and

ML tools with real world data in drug discovery and development also

comes with many challenges, such as nonstandard data, reproducibil-

ity between labs, and translatability between experiment models and

humans.

5 MACHINE LEARNING IN PREDICTING
SUCCESS THROUGH DEVELOPMENT

The termination or withdrawal of a drug candidate has been due pri-

marily due to two factors: lack of efficacy and unfavorable toxicity

properties. Although some drug-likeness measures, such as Lipinski’s

Rule of 5,38 Veber’s Rule,39 and Ghose’s Rule,40 have proved a use-

ful guide for filtering out toxic compounds, their predictions are very

conservative. Using an ML-based approach to analyze existing clinical

trial data may prove to be a more data-driven approach to solve this

problem and help design and progress drugs with less toxicity. Using

a set of FDA-approved drugs and drugs that failed in clinical trials

due to toxicity, a random forest model has been developed to combine

both chemical properties and drug-likeness measurements with target

properties (such as tissue-specific expression levels and network con-

nectivity) to predict the likelihood of toxic events in independent test

sets.41 Currently prediction models focus primarily on small molecu-

lar drugs, but with the development and curation of both experimental

and clinical data from other modalities, such as antibodies and biolog-

ical therapeutics, the same big data and ML-driven approaches could

contribute to their preclinical development.

In terms of clinical trials failures due to lack of efficacy, poor

translation between preclinical models and humans is one plausi-

ble cause. Some studies have begun using ML approaches to bridge

the translational gap across species and are attempting to generate

humanized computational models from animal models.42 Most studies

usegenomic and transcriptomicdata frompopulation studies and focus

on cross-species pairs as well as genotype-phenotype relationships.

One may hypothesize that using ML-based approaches to interrogate

clinical trial data (especially individual level clinical data) along with

preclinical experimental data, could shine a light on the translatability

of experimental models and the development of computational mod-

els to predict the likelihood of success in clinical trials from animal

experiment data.

6 DATA SCIENCE IN PATIENT STRATIFICATION

NDs have distinct clinical signs and symptoms that define their diag-

nostic criteria. NDs, however, share a few crucial aspects. All NDs

are characterized by aggregation of a specific protein product, the

selective degeneration of a population of neurons, usual adult onset

of disease, and heterogeneous etiology.43,44 Although 10%–20% of

patients have a relevant family history, in most cases the condition

appears sporadic. The estimated heritability of genetically complex

NDs is between 40% and 80%.12,45

Current classification of most NDs is based on clinical phenotypes,

which often does not consider either underlying disease heterogene-
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DOHERTY ET AL. 5

ity or overlappingdiseasemechanisms, thushindering therapy tailoring

due to the unknown links between mechanism and phenotype. Per-

hapsNDs shouldbe consideredas several different conditions thatmay

look the same. For example, ADpathology causes dementia but is influ-

enced by many variations in an individual’s genetic profile, which can

be argued to precipitate disease trajectory and result in subtle patho-

logical variations. This leads to the argument that patient selection

and stratification should take these considerations into account to find

the patients at the right pathological stage/trajectory of AD. This is in-

linewith the recently suggested probabilistic hypotheticalmodel of AD

suggested by Frisoni and colleagues.46

These shared phenomena raise the possibility that NDs share

pathogenic mechanisms. Indeed, there is increasing recognition of

heterogeneity within and overlap between clinically defined ND

entities.47–49 This has limited the success of effective drug develop-

ment and clinical trials. There is an urgent need to now move beyond

clinical phenotyping to recognize the presence of shared biological

pathways across NDs. Stratifying patients into subgroups based on

biological factors might help in predicting a patient’s response. For

example, in amyotrophic lateral sclerosis (ALS) more than 15% of

patients have features of frontotemporal dementia (FTD) and detailed

testing reveals that ≈50% have cognitive and behavioral changes con-

sistent with FTD.20 Despite these commonalities, clinical phenotypes

manifest via divergent pathology through selective neuronal vulnera-

bility. Furthermore, there is a strong shared genetic component.50,51

VCP, ERRB4, andC9orf72 are known to be associatedwith AD, ALS, and

FTD; yet not all individualswho are at genetic risk of ADor FTD-ALS go

on to develop the disease.

Personalizedmedicine approaches aremore likely to result in effec-

tive treatments if they target the underlying causes directly. Such

personalized approaches are exemplified by gene therapy. The benefit

of usinggenetic informationhasbeendemonstrated clearly inoncology

with breast cancer, that is, herceptin for women with HER-2-positive

breast cancer, ovarian cancer, and colorectal cancer.52,53 For example,

AD pathology causes dementia but is influenced by many variations

in an individual’s genetic profile, which might be useful in predicting

disease trajectories and understanding the subtle disease variations.54

Many genetic andmulti-omic data sets of differentNDs have been gen-

erated, and the availability ofmany newanalytical tools are now for the

first time allowing the combination of these resources to informclinical

trial design.55,56 The identification of biologically meaningful clusters

using genetic or multi-omic data might allow for better stratification

and patient selection with more targeted treatments due to a greater

understanding of diseasemechanisms.57

Designing trials aimed at those expected to respond has the poten-

tial to be beneficial for all stakeholders. However, any ML-based

approaches to screening/trial design would only be one step in the

larger screening process to enable better clinical trials and should

be implemented only while in discussion with the relevant regula-

tory authorities. As with all trial design, there is a balance to be

found between the studied population (inclusion/exclusion criteria)

and the target label designation. In relation to when a smaller pop-

ulation may be a barrier for FDA approval, the recently approved

QALSODYTM (tofersen)58 for ALS patients carrying a superoxide dis-

mutase 1 mutation provides a good example of successfully targeting

a selected subpopulation (in this case ≈2% ALS population).59 Specif-

ically, across the AD continuum the progressive pathology and differ-

ential rates of decline in biomarkers60 necessitates a more nuanced

approach to clinical trial design across all phases of drug develop-

ment. Adaptive design is one avenue that has shown real promisewhen

applied in phase II clinical trials. A recent application of ML method-

ologies for optimum dose selection allowed a quicker decision-making

process in the development of Lecanemab. Subjects in the phase II

study were assigned to themost likely beneficial dose using a Bayesian

adaptive approach resulting in more subjects exposed to the most

likely beneficial dose.61 This shortened timelines and allowed for a

greater sample size in the most efficacious drug group. Deploying

similar methodologies within concordant scenarios has the power to

benefit subjects and researchers alike.

7 CLINICAL TRIAL DESIGN AND MACHINE
LEARNING

As described earlier, disease and pathology comorbidities are com-

mon within the general elderly population.62 Image analysis of these

comorbidities lends itself to ML methodologies, and one example of

this is the Subtype and Stage Inference (SuStaIn) algorithm.63 This data

driven (unsupervised) approach was designed to be able to identify

any potential subgroups or progression patternswithin cross-sectional

databases across dementia types. This has been used within AD in the

analysis of tau positron emission tomography (PET) images to uncover

four distinct trajectories of deposition.64 A recent study has also show-

ing three optimal distinct amyloid accumulation subtypes, with each

showing separate risk factors known to influence AD progression.65

This further emphasizes the heterogeneity of AD, something that is

common evenwithin clinical trial cohorts aimed at a singular disease or

process. Despite this, trials for diseases such as AD have populations

that often display heterogeneous biomarker profiles, which suggests

the presence of multiple stages or subtypes of disease.

Disentangling the heterogeneity of NDs such as AD is critical to

get the right disease-modifying drugs to the right patients, at the right

time—including during clinical trials. Recent evidence has shown indi-

cations of AD heterogeneity through a conceptual framework referred

to as the ATX(N) continuum, which categorizes individuals using

biomarkers that chart core AD pathophysiological features, namely,

amyloid beta Aβ (A), tau (T), neurodegeneration (N), and where X rep-

resents additional candidate biomarkers such as neuroimmune dysreg-

ulation, synaptic dysfunction, and blood–brain barrier alterations.66,67

Recent work from multiple groups proposes distinct subtypes of AD

andwere yielded fromMLmethodologies onRNAdatapoints.68,69 Fur-

ther evidence comes from a recent review of biological heterogeneity

in AD,62 which concluded that there are three distinct drivers of het-

erogeneity including risk factors, protective factors, and concomitant

non-ADpathology, all ofwhich need tobe addressedwithin clinical trial

populations to better address the underlying disease process.
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6 DOHERTY ET AL.

Further to this, prior phase trials can yield important information

that informs a goor no-godecision. As outlined inWessels et al.,70 prior

cognitive data as well as biomarker outputs can fundamentally drive

future development. However, endpoints are sometimes underutilized

or hypotheses poorly designed, leading to a discordance in findings

across each phase of development. ML can play a key role in improv-

ing these decisions, trial design, and boosting the power of trials. This

can be achieved by assisting trial enrichment with appropriate sub-

jects classifiedprior to enrolment through imaging, cognitive trajectory

(when measured over time), and subject stratifications.71–73 Enriching

cohorts with subjects who are at the correct stage for each individ-

ual compound can be achieved by fundamentally categorizing based

upon biomarkers that relate to homogenous staging and prospective

endpoint declines. Many markers now exist for accurate classification

of subjects within the ATX(N) criteria for AD, nearly all of which are

already captured within clinical trials. Similar criteria are now being

implemented with other NDswith stratification by neurofilament light

(NfL) allowing for clinical subtype dichotomization for PD,74 which also

holds promise for FTD, ALS, and dementia with Lewy bodies (DLB).

With regulatory approaches aligning with this narrative, part of the

recent recommendations from the FDA75 looked at three key areas

to improve and enrich clinical trials: strategies to decrease variability,

prognostic enrichment strategies, and predictive enrichment strate-

gies. It is important to note that minimizing variability by excluding

subjects who had large changes to patient-reported outcome mea-

sures at baseline, in essence placebo responders, is fundamental to

this. However, instead of incorporating long lead times as well as

additional endpoints and analyses, modeling progression based upon

disease-specific biomarkers and sub-setting the analysis a priori can

alleviate these operational constraints. Further to this, as biofluid

markers become more accessible and cost-effective in larger trials,

algorithms that can predict biomarker status become particularly use-

ful in increasing screening success rates and could lead to quicker trials

and speedier decisions on compound efficacy.

Given that these problems also exist outside of the common NDs,

considering these other heterogenous areas for ways to improve clini-

cal trial designs can also suggest possible benefits. The rare autosomal

dominant mitochondrial disease Friedreich’s ataxia has a number of

concordant issueswithwhich to contendand thusutilizing a single end-

point for trial outcomes is not ideal. It has instead been suggested to

stratify by subtype to reduce thenumber of participants needed,match

a subgroup to candidate compounds for yielding better results, and

promote international collaboration aswell as remote assessments and

screenings to increase patient-selection speed.76

Another example of enrichment comes from recent clinical trials

with PD. When targeting people with early motor dysfunction, par-

ticipants without a deficit in dopamine levels (as measured by single-

photon emission computed tomography [SPECT]) can be excluded

to enrich clinical trial populations with patients with idiopathic PD.

This can improve the statistical power by excluding subjects who are

unlikely to progress clinically. Reduced binding on this imaging modal-

ity has been shown to predict faster decline on the Unified Parkinson’s

Disease Rating Scale (UPDRS) parts II (activities of daily living) and

III (motor examination).13 The European Medicines Agency issued

a full qualification opinion for the use of dopamine transporter as

an enrichment biomarker in PD trials targeting subjects with early

motor symptoms, indicating the applicability and utilization of these

methodologies to clinical trials.77

8 LIMITATIONS OF ARTIFICIAL INTELLIGENCE
FOR DRUG DISCOVERY

Several limitations are hampering progress in the application of AI to

drug discovery. ML approaches are all dependent on the availability

of high-quality, representative, unbiased, and rich labeled data that

adequately capture the problem parameters required. For many drug

targets there is now a huge amount of relevant chemical and biologi-

cal information available, althoughmuch of these data are notmachine

readable or meaningfully combined. Expert curation, data wrangling,

and domain expertise are needed to integrate data from multiple

sources in an optimal way. Commercial considerations have been lim-

ited historically to the sharing of carefully guarded proprietary drug

development data by pharmaceutical companies and publishers,78

thus restricting data integration and progress. However, open science

approaches to drug development have been trialed although remain

rare, for example, the development of antimalarials by Eli Lilly using a

crowdsourcing platform for compound screening.79

Not all ML methods are equally explainable or practical to imple-

ment. Although ML methods such as SVMs and random forest have

long been used in drug discovery, deep neural networks have recently

risen to prominence due to their flexible architectures and ability to

model complex interactions. However, they have also drawn criticism

for their need for huge amounts of high-quality training data, lack of

explainability, and hidden “black box” structure, raising concerns about

their appropriateness in medicine development.80 Furthermore, stan-

dard ML methods provide predictions and model associations without

necessarily giving biologically grounded causal insights. Causal ML

approaches are, therefore, being developed in an attempt to bridge the

gap between prediction and explanation, although are not yet widely

adopted.81 Finally, themore complicated theMLmodel, the greater the

degree of expertise required for their development and optimization.

Therefore, requirement for expert users remains another important

limitation. In short, ML is not the magical panacea that it is sometimes

portrayed to be. Taken together these limitations remind us that the

effective application of ML to drug discovery remains heavily reliant

upon human insight and expertise.

9 KEY RECOMMENDATIONS IN USING DATA
SCIENCE TO IMPROVE MEDICAL CARE FOR
PATIENTS

9.1 A biotech industry perspective

One of the main bottlenecks in applying big data analytics and ML

to dementia drug discovery, or any drug discovery program, is the

paucity of high-quality, clinically relevant, and well-annotated data
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DOHERTY ET AL. 7

sets. In order to maximize the impact big data and ML can bring to

drug discovery and eventually the patient, there is a need for shar-

ing data in an open, non-competitive manner with multiple parties

in the health care ecosystem. Some initiatives have started to make

progress on this. TransCelerate from Biopharma Inc. enables the shar-

ing of de-identified clinical data collected historically in the control

arms of clinical trials with the aim of providing a better understand-

ing of disease, improved patient stratification, and the generation of

synthetic control arms.82 An oncology focused initiative, Project Data

Sphere, has set a precedent for open-access data sharing, with a plat-

form of patient-level clinical trials data from industry and academia,

withmanymajor pharmaceutical companies contributing data (https://

www.projectdatasphere.org). With some dementia-focused data shar-

ing initiatives, such as the Alzheimer’s Disease Data Initiative (ADDI;

https://www.alzheimersdata.org/), Critical Path Institute (CPI; https://

c-path.org/), and the Global Alzheimer’s Association Interactive Net-

work (GAAIN; http://gaain.org) becomingmore prominent, there is still

a big need for more collaboration and data contributions from indus-

try as well as academia and government agencies. This would help to

deliver a better understanding of disease pathology andmore efficient

drug development.

In addition to closer collaboration between biotech, pharmaceutical

companies, and academiawithin the biomedical sector, a wide interdis-

ciplinary collaboration between different sectors, such as information

technology companies, is crucial for maximizing the potential impact

of big data and ML. With the rapid development of new AI and ML

technologies, it is important for the biotech industry to embed com-

puter science experts at an early stage into relevant initiatives in order

to build core capabilities and interdisciplinary teams, as well as to

leverage advisors from academic research groups with the necessary

experience. This will not only help maximize the utilization of histor-

ical data, but, more importantly, will help to streamline current drug

development timeframes by engaging with relevant ML and computa-

tional experts from the outset of a project. To this end, a number of

biomedical-focused AI companies have emerged in recent years with

collaborations between those AI companies and industry/academia

proving fruitful. An example of this is Trials.ai working with Moores

Cancer Center to manage their clinical trials and reportedly cutting

the study’s timeframe by ≈33% while reducing data errors by 20%

(www.pharma-iq.com).

9.2 An academic perspective

Given their complexity and portrayal in popular culture, AI applications

are particularly susceptible to public mistrust and misinterpretation.

Academia offers an independent, rigorous, and objective pathway to

assess the validity and reliability of AI in health care and clinical

research. We argue that this is particularly important when applied to

drug discovery and clinical trials in dementia, where the stakes of find-

ingnovel therapeutics are considerable and successful uptake and trust

in breakthroughs are essential.

Primary activities in the academic sphere relate to development

initiatives including the latest biomarkers and analysis methods.83,84

When combined, these can result in instrumental studies that rede-

fine our understanding of disease progression and the underlying

biology.47,64,85 Such discoveries promise high impact on clinical trials

through enrichment and screening processes, as well as patient man-

agement in health care. However, they rely on collaborative efforts

with biotech (for trials data access), regulators (compliance for imple-

mentation in clinical trials), and health care (for data and patient

access). Large collaborative networks like the DEMON Network are

vital to this, as they span all three sectors.

Taken literally, part of academia’s primary purpose is to be an

“academy” to train the future workforce to meet the needs of soci-

ety. Training a data science literate workforce is urgently needed to

meet the increasing move toward data-driven translational precision

medicine.86,87 Academia also has the flexibility to take greater risks,

due to having fewer constraints or less influence from external market

forces. Once breakthroughs are made, academic–industry partner-

ships are crucial to implement and translate the innovation into real

world settings.

9.3 A health care perspective on utilization of
these methodologies

The intersection of data science and health care has two key roles

in drug development for dementia. First, data science can contribute

to data-driven clinical decision support systems (CDSSs), which are

essential because the multitude of data available to health care prac-

titioners defies qualitative assessment.88 Second, dementia trials are

moving increasingly fromsymptomatic trials towarddisease-modifying

secondary prevention,88 and in the future, perhaps even within pri-

mary prevention trials such as AHEAD 3-45.89 Both will ultimately

require linking with health care data to facilitate/support model train-

ing (e.g., CDSSs) and trial recruitment, whichmay be done primarily via

electronic medical records (eMRs). This should be a focus in the near

future for assistingwithmaximizing the informationobtained in clinical

studies aswell as trial accuracy and success. AIwill help clarify and har-

monize data entry, analysis, and interpretation, which is required for

analysis of eMRs outside of health care settings.

Finally, as many of the workforce are employed in both health care

and academia, a close relationship will be of benefit. Clinical academics

are crucial to ensuring innovations are evidence-based, but also have a

realistic chance of being successfully adopted in practice and essential

in providing a perspective throughout the clinical trials pipeline.

9.4 A regulatory agencies perspective

Key to the successful implementation of these techniques into real

world clinical trials is the alignment and guidance of regulatory

agencies. Both EU and US stakeholders and regulators have issued
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guidance and ethical considerations around ML and AI paradigms

as well as position papers on clinical trial designs implementing ML

methodologies.76,90–93 These papers have set out approaches but do

not provide clear guidelines for wider applicability to clinical trials

across all therapeutic areas.

One key principle needed from regulatory authorities is to harmo-

nize their efforts in standardization. To do this there needs to be a

set of principles, akin to Good Clinical Research Practice (GCP), for

these types of paradigms. The FDA has begun to encourage the harmo-

nization of Good ML Practice (GMLP), to describe a set of AI/ML best

practices (e.g., data management, feature extraction, training, inter-

pretability, evaluation, and documentation) but have yet to publish a

full position paper on this topic. A number of groups have beenworking

toward these guidelines in conjunction with regulators including Insti-

tute of Electrical & Electronics Engineers (IEEE), Association for the

Advancement of Medical Instrumentation (AAMI), and International

Medical Device Regulators Forum (IMDRF). Similarly, the European

Medicines Agency (EMA) 2025 strategic document93 outlines their

plans to establish similar guidelines aswell as acceptabilitymetrics and

success factor for approval of these paradigms. It is notable that they

have also pledged to standardize with other regulatory agencies such

as the FDA.

Current regulatory papers lag the wider usage of ML techniques,

leading to regulatory uncertainty with risks for stakeholders and com-

panies looking to implement thesemethodologies. Several groups have

set out their own guidelines.94–96 However, without regulatory guide-

lines in place there will be inherent hesitancy from industry partners

to implement these paradigms. This is largely because without prior

knowledge of the levels of sensitivity and specificity in these new

ML techniques, using GMLP and data governance principles (among

others) that require approval, no drug development program would

include these at risk. Nevertheless, the regulatory outlook from both

the FDA and EMA is a positive forward-looking perspective. The appli-

cation of AI/ML to clinical trials methodology has already shown

promise, but compliance guidance from these agencies is needed

beforeML techniques can be deployed in drug development.

10 CONCLUSION AND FUTURE DIRECTIONS

There is ample scope for ML techniques to yield significant contri-

butions across drug discovery and clinical trial landscapes. Key to

progressing as a field is collaboration between all stakeholders. The

prior disappointing outcomes from the BACEi trials (e.g.,97–100) have

shown the benefits of working across companies, academia, and health

care. This helped to further progress our understanding of com-

pounds, albeit within a setting that was in this instance to uncover the

adverse events occurring across these compounds.98,99,101 This frame-

work of collaboration was made possible by outside efforts from the

Alzheimer’s Association, among other stakeholders, and demonstrates

the benefits of larger companies working together and sharing data.

Figure 2 summarizes the opportunities, types of data, and processes

through which each partner can assist across the landscape of drug

development. Although the number and complexity of big data sets

are increasing, they can still be utilized to a greater degree and should

be addressed across all stakeholder groups to further our understand-

ing of NDs. With large untapped resources within academia, health

care, and industry, collaborative efforts and bottom-up expertise are

necessary to further advance and apply ML within drug discovery

and compound development. Expertise should be engaged earlier and

with more frequency in the drug-development process. Teams and

individual expertswould yield critical knowledge to better improve dis-

covery, selection, anddevelopment of newmolecular entities. Engaging

experts and research groups at the right stage of drug development

can also increase the speed of decision-making, enabling quicker pro-

gression of compounds, reducing cost, and mitigating overall risk

F IGURE 2 Opportunities for data science andmachine learning across clinical development and drug discovery. Data availability ranging from
sparse/difficult to obtain (red) to easily obtainable (green).
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across compound development. In conclusion, there are vast and var-

ied opportunities for data science and ML to assist drug identification,

improve trial design, and increase chances of compound success, all of

which are yet to be fully utilized.
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