266 research outputs found

    Bi-directional top hat D-Scan: single beam accurate characterization of nonlinear waveguides

    Full text link
    The characterization of a third order nonlinear integrated waveguide is reported for the first time by means of a top-hat Dispersive-Scan (D-Scan) technique, a temporal analog of the top-hat Z-Scan. With a single laser beam, and by carrying two counter-directional nonlinear transmissions to assess the input and output coupling efficiencies, a novel procedure is described leading to an accurate measurement of the TPA figure of merit, the effective Two-Photon Absorption (TPA) and optical Kerr (including the sign) coefficients. The technique is validated in a silicon strip waveguide for which the effective nonlinear coefficients are measured with an accuracy of ±10 %\pm 10~\%Comment: 5 pages, 4 figure

    Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides

    Full text link
    We experimentally show that the self-phase modulation of picosecond pump pulses, induced by both the optical Kerr effect and free-carrier refraction, has a detrimental effect on the maximum on-off Raman gain achievable in silicon on insulator nanowaveguides, causing it to saturate. A simple calculation of the Raman gain coefficient from the measured broadened output pump spectra perfectly matches the saturated behavior of the amplified Raman signal observed experimentally at different input pump powers.Comment: Accepted for publications in Applied Physics Letter

    Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectin1 V domain.

    Get PDF
    Nectins form a family of integral molecules that belong to the immunoglobulin superfamily. Their ectodomain is made of three Ig-like domains (V, C, C). This family comprises at least five members, namely nectin1, -2, -3, -4, and poliovirus receptor (PVR), that are involved in different physiological and pathological processes. (i) Nectins are adhesion molecules localized at adherens junctions in epithelial cells. (ii) Some nectins act as poliovirus or alpha-herpesvirus receptors (nectin1). (iii) Nectin1 mutations are involved in orofacial developmental abnormalities in humans. Adhesion properties of nectins are mediated by Ca(2+)-independent homophilic and heterophilic processes through ectodomain trans-interactions. We have described a nectin trans-hetero-interaction network: nectin3 binds to nectin1, nectin2, and PVR; nectin1 also binds to nectin4. In the present study we compared the affinities of the different trans-interactions mediated by nectin1. We found that the K(D) of nectin1/nectin3 and nectin1/nectin4 interactions is 1 and 100 nm, respectively, whereas the K(D) of the nectin1-mediated homophilic interaction is 1 microm. We show that nectin1/nectin3 and nectin1/nectin4 trans-hetero-interactions were mediated through trans V to V domain interactions, whereas C domains contributed to increase the affinity of the interaction. Nectin3 and nectin4 share a common binding region in the nectin1 V domain: (i) nectin3 strongly competed with nectin4 binding, (ii) nectin3 and nectin4 binding to nectin1 was reduced by a number of monoclonal antibodies directed against the nectin1 V domain, and (iii) the glycoprotein D of herpes simplex virus-1 that binds to the V domain of nectin1 reduced nectin3 and nectin4 binding. Finally, using chimeric nectin1/PVR receptors where PVR V domain beta-strands were substituted with the corresponding regions of nectin1, the nectin3 and nectin4 minimal binding region on nectin1 V domain was mapped to the C-C'-C"-D beta-strands

    An adaptive optimization strategy based on mixture of experts for wing aerodynamic design optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143084/1/6.2017-4433.pd

    Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide

    Full text link
    Nonlinear propagation experiments in GaAs photonic crystal waveguides (PCW) were performed, which exhibit a large enhancement of third order nonlinearities, due to light propagation in a slow mode regime, such as two-photon absorption (TPA), optical Kerr effect and refractive index changes due to TPA generated free-carriers. A theoretical model has been established that shows very good quantitative agreement with experimental data and demonstrates the important role that group velocity plays. These observations give a strong insight into the use of PCWs for optical switching devices.Comment: 6 page

    Nonlinear Properties of Ge-rich Si1-xGexMaterials with Different Ge Concentrations

    Get PDF
    Silicon photonics is a large volume and large scale integration platform for applications from long-haul optical telecommunications to intra-chip interconnects. Extension to the mid-IR wavelength range is now largely investigated, mainly driven by absorption spectroscopy applications. Germanium (Ge) is particularly compelling as it has a broad transparency window up to 15 ĂŽÂĽm and a much higher third-order nonlinear coefficient than silicon which is very promising for the demonstration of efficient non-linear optics based active devices. Si1-xGexalloys have been recently studied due to their ability to fine-Tune the bandgap and refractive index. The material nonlinearities are very sensitive to any modification of the energy bands, so Si1-xGexalloys are particularly interesting for nonlinear device engineering. We report on the first third order nonlinear experimental characterization of Ge-rich Si1-xGexwaveguides, with Ge concentrations x ranging from 0.7 to 0.9. The characterization performed at 1580 nm is compared with theoretical models and a discussion about the prediction of the nonlinear properties in the mid-IR is introduced. These results will provide helpful insights to assist the design of nonlinear integrated optical based devices in both the near-and mid-IR wavelength ranges

    DNAM-1 and PVR Regulate Monocyte Migration through Endothelial Junctions

    Get PDF
    DNAX accessory molecule 1 (DNAM-1; CD226) is a transmembrane glycoprotein involved in T cell and natural killer (NK) cell cytotoxicity. We demonstrated recently that DNAM-1 triggers NK cell–mediated killing of tumor cells upon engagement by its two ligands, poliovirus receptor (PVR; CD155) and Nectin-2 (CD112). In the present paper, we show that PVR and Nectin-2 are expressed at cell junctions on primary vascular endothelial cells. Moreover, the specific binding of a soluble DNAM-1–Fc molecule was detected at endothelial junctions. This binding was almost completely abrogated by anti-PVR monoclonal antibodies (mAbs), but not modified by anti–Nectin-2 mAbs, which demonstrates that PVR is the major DNAM-1 ligand on endothelial cells. Because DNAM-1 is highly expressed on leukocytes, we investigated the role of the DNAM-1–PVR interaction during the monocyte transendothelial migration process. In vitro, both anti–DNAM-1 and anti-PVR mAbs strongly blocked the transmigration of monocytes through the endothelium. Moreover, after anti–DNAM-1 or anti-PVR mAb treatment, monocytes were arrested at the apical surface of the endothelium over intercellular junctions, which strongly suggests that the DNAM-1–PVR interaction occurs during the diapedesis step. Altogether, our results demonstrate that DNAM-1 regulates monocyte extravasation via its interaction with PVR expressed at endothelial junctions on normal cells

    Ge-rich SiGe waveguides for supercontinuum generation in the mid-IR

    Get PDF
    International audienceThe third-order nonlinear parameter of Ge-rich SiGe waveguides are experimentally retrieved using a bi-directional top hat D-scan at λ = 1.58 µm. The obtained values are then used to fit the theoretical equation, providing promising values in the mid-IR, where the nonlinear effects are no longer limited by two-photon absorption. New Ge-rich SiGe waveguide designs are provided to exploit the nonlinear properties in the mid-IR, showing a flat anomalous dispersion over one octave spanning from λ = 3 µm to λ = 8 µm and a γ parameter that decreases from γ = 10 W-1 m-1

    Masitinib as an adjunct therapy for mild-to-moderate Alzheimer's disease: a randomised, placebo-controlled phase 2 trial

    Get PDF
    International audienceIntroductionNeuroinflammation is thought to be important in Alzheimer's disease pathogenesis. Mast cells are a key component of the inflammatory network and participate in the regulation of the blood-brain barrier's permeability. Masitinib, a selective oral tyrosine kinase inhibitor, effectively inhibits the survival, migration and activity of mast cells. As the brain is rich in mast cells, the therapeutic potential of masitinib as an adjunct therapy to standard care was investigated.MethodsA randomised, placebo-controlled, phase 2 study was performed in patients with mild-to-moderate Alzheimer's disease, receiving masitinib as an adjunct to cholinesterase inhibitor and/or memantine. Patients were randomly assigned to receive masitinib (n = 26) (starting dose of 3 or 6 mg/kg/day) or placebo (n = 8), administered twice daily for 24 weeks. The primary endpoint was change from baseline in the Alzheimer's Disease Assessment Scale - cognitive subscale (ADAS-Cog) to assess cognitive function and the related patient response rate.ResultsThe rate of clinically relevant cognitive decline according to the ADAS-Cog response (increase >4 points) after 12 and 24 weeks was significantly lower with masitinib adjunctive treatment compared with placebo (6% vs. 50% for both time points; P = 0.040 and P = 0.046, respectively). Moreover, whilst the placebo treatment arm showed worsening mean ADAS-Cog, Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory, and Mini-Mental State Examination scores, the masitinib treatment arm reported improvements, with statistical significance between treatment arms at week 12 and/or week 24 (respectively, P = 0.016 and 0.030; P = 0.035 and 0.128; and P = 0.047 and 0.031). The mean treatment effect according to change in ADAS-Cog score relative to baseline at weeks 12 and 24 was 6.8 and 7.6, respectively. Adverse events occurred more frequently with masitinib treatment (65% vs. 38% of patients); however, the majority of events were of mild or moderate intensity and transitory. Severe adverse events occurred at a similar frequency in the masitinib and placebo arms (15% vs. 13% of patients, respectively). Masitinib-associated events included gastrointestinal disorders, oedema, and rash.ConclusionsMasitinib administered as add-on therapy to standard care during 24 weeks was associated with slower cognitive decline in Alzheimer's disease, with an acceptable tolerance profile. Masitinib may therefore represent an innovative avenue of treatment in Alzheimer's disease. This trial provides evidence that may support a larger placebo-controlled investigation.Trial registrationClinicaltrials.gov NCT0097611
    • …
    corecore