848 research outputs found

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϵceR_{N}I_{c}/\epsilon_{c} and kBT/ϵck_{B}T/\epsilon_{c} where ϵc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Coherent low-energy charge transport in a diffusive S-N-S junction

    Full text link
    We have studied the current voltage characteristics of diffusive mesoscopic Nb-Cu-Nb Josephson junctions with highly-transparent Nb-Cu interfaces. We consider the low-voltage and high-temperature regime eV<\epsilon_{c}<k_{B}T where epsilon_{c} is the Thouless energy. The observed excess current as well as the observed sub-harmonic Shapiro steps under microwave irradiation suggest the occurrence of low-energy coherent Multiple Andreev Reflection (MAR).Comment: 4 pages, 4 figures, final versio

    Commissioning and operation of the Cherenkov detector for proton Flux Measurement of the UA9 Experiment

    Full text link
    The UA9 Experiment at CERN-SPS investigates channeling processes in bent silicon crystals with the aim to manipulate hadron beams. Monitoring and characterization of channeled beams in the high energy accelerators environment ideally requires in-vacuum and radiation hard detectors. For this purpose the Cherenkov detector for proton Flux Measurement (CpFM) was designed and developed. It is based on thin fused silica bars in the beam pipe vacuum which intercept charged particles and generate Cherenkov light. The first version of the CpFM is installed since 2015 in the crystal-assisted collimation setup of the UA9 experiment. In this paper the procedures to make the detector operational and fully integrated in the UA9 setup are described. The most important standard operations of the detector are presented. They have been used to commission and characterize the detector, providing moreover the measurement of the integrated channeled beam profile and several functionality tests as the determination of the crystal bending angle. The calibration has been performed with Lead (Pb) and Xenon (Xe) beams and the results are applied to the flux measurement discussed here in detail.Comment: 25 pages, 14 figure

    A new system for fast and quantitative analysis of heterologous gene expression in plants

    Get PDF
    Large-scale analysis of transcription factor–cis-acting element interactions in plants, or the dissection of complex transcriptional regulatory mechanisms, requires rapid, robust and reliable systems for the quantification of gene expression.Here, we describe a new system for transient expression analysis of transcription factors, which takes advantage of the fast and easy production and transfection of Physcomitrella patens protoplasts, coupled to flow cytometry quantification of a fluorescent protein (green fluorescent protein). Two small-sized and high-copy Gateway® vectors were specifically designed, although standard binary vectors can also be employed. As a proof of concept, the regulation of BANYULS (BAN), a key structural gene involved in proanthocyanidin biosynthesis in Arabidopsis thaliana seeds, was used. In P. patens, BAN expression is activated by a complex composed of three proteins (TT2/AtMYB123, TT8/bHLH042 and TTG1), and is inhibited by MYBL2, a transcriptional repressor, as in Arabidopsis. Using this approach, two new regulatory sequences that are necessary and sufficient for specific BAN expression in proanthocyanidin-accumulating cells were identified. This one hybrid-like plant system was successfully employed to quantitatively assess the transcriptional activity of four regulatory proteins, and to identify their target recognition sites on the BAN promoter

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    Calorimetric readout of a superconducting proximity-effect thermometer

    Full text link
    A proximity-effect thermometer measures the temperature dependent critical supercurrent in a long superconductor - normal metal - superconductor (SNS) Josephson junction. Typically, the transition from the superconducting to the normal state is detected by monitoring the appearance of a voltage across the junction. We describe a new approach to detect the transition based on the temperature increase in the resistive state due to Joule heating. Our method increases the sensitivity and is especially applicable for temperatures below about 300 mK.Comment: 10 pages, 5 figures. To appear in the proceedings of the Conference on Micro- and Nanocryogenics (LT25 satellite) organized in Espoo, Finland (2008

    Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound

    Full text link
    [EN] We theoretically and experimentally report sub-wavelength resonant panels for low-frequency quasi-perfect sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound phenomenon. The sub-wavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to strong dispersion, the cavity resonances accumulate at the limit of the bandgap below the resonance frequency of the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasi-critical coupling can be achieved. In this way, using only monopolar resonators quasi-perfect absorption can be obtained in a material including transmission.This work has been funded by the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE.Jimenez, N.; Romero GarcĂ­a, V.; Pagneux, V.; Groby, J. (2017). Quasi-perfect absorption by sub-wavelength acoustic panels in transmission using accumulation of resonances due to slow sound. PHYSICAL REVIEW B-CONDENSED MATTER. 95(1). doi:10.1103/PhysRevB.95.014205S01420595

    Daptomycine : AMM ou réalité ?

    Get PDF
    International audienc
    • …
    corecore