240 research outputs found

    Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection

    Get PDF
    On Earth, biological systems have evolved in response to environmental stressors, interactions dictated by physical forces that include gravity. The absence of gravity is an extreme stressor and the impact of its absence on biological systems is ill-defined. Astronauts who have spent extended time under conditions of minimal gravity (microgravity) experience an array of biological alterations, including perturbations in cardiovascular function. We hypothesized that physiological perturbations in cardiac function in microgravity may be a consequence of alterations in molecular and organellar dynamics within the cellular milieu of cardiomyocytes. We used a combination of mass spectrometry-based approaches to compare the relative abundance and turnover rates of 848 and 196 proteins, respectively, in rat neonatal cardiomyocytes exposed to simulated microgravity or normal gravity. Gene functional enrichment analysis of these data suggested that the protein content and function of the mitochondria, ribosomes, and endoplasmic reticulum were differentially modulated in microgravity. We confirmed experimentally that in microgravity protein synthesis was decreased while apoptosis, cell viability, and protein degradation were largely unaffected. These data support our conclusion that in microgravity cardiomyocytes attempt to maintain mitochondrial homeostasis at the expense of protein synthesis. The overall response to this stress may culminate in cardiac muscle atrophy

    The Lantern Vol. 63, No. 2, Spring 1996

    Get PDF
    ‱ Poet, Lead Me On ‱ St. Patrick\u27s Day ‱ The Last Three Days ‱ The Impressionable ‱ Roundabout ‱ The Bench ‱ Carnivorous ‱ Kyrie ‱ Second Glance ‱ Porch ‱ Cruel Design ‱ A Mime ‱ Flaxen Crown ‱ My Embryonic Ocean of Love ‱ Stone Matrix ‱ Voices from the Past ‱ Skipping the Bullfight: Toreadors and Gaudi ‱ Another Part of My Lacolonialism ‱ Translucent Pane ‱ Linguistics ‱ Treehouse ‱ A Disagreeable Music Piece ‱ Vigil ‱ A Brief History of American Poetry in Englishhttps://digitalcommons.ursinus.edu/lantern/1148/thumbnail.jp

    Neoadjuvant multidrug chemotherapy including High-Dose Methotrexate modifies VEGF expression in Osteosarcoma: an immunohistochemical analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays a role in the progression of osteosarcoma, as well as in other mesenchymal tumors and carcinomas, and it is most commonly assessed by vascular endothelial growth factor (VEGF) expression or tumor CD31-positive microvessel density (MVD). Tumor VEGF expression is predictive of poor prognosis, and chemotherapy can affect the selection of angiogenic pattern. The aim of the study was to investigate the clinical and prognostic significance of VEGF and CD31 in osteosarcoma, both at diagnosis and after neoadjuvant chemotherapy, in order to identify a potential role of chemotherapy in angiogenic phenotype.</p> <p>Methods</p> <p>A retrospective analysis was performed on 16 patients with high grade osteosarcoma. In each case archival pre-treatment biopsy tissue and post-chemotherapy tumor specimens were immunohistochemically stained against CD31 and VEGF, as markers of angiogenic proliferation both in newly diagnosed primary osteosarcoma and after multidrug chemotherapy including high-dose methotrexate (HDMTX). The correlation between clinicopathological parameters and the degree of tumor VEGF and CD31 expression was statistically assessed using the χ<sup>2 </sup>test verified with Yates' test for comparison of two groups. Significance was set at <it>p </it>< 0,05.</p> <p>Results</p> <p>Expression of VEGF was positive in 11 cases/16 of cases at diagnosis. Moreover, 8 cases/16 untreated osteosarcomas were CD31-negative, but the other 8 showed an high expression of CD31. VEGF expression in viable tumor cells after neoadjuvant chemotherapy was observed in all cases; in particular, there was an increased VEGF expression (post-chemotherapy VEGF - biopsy VEGF) in 11 cases/16. CD31 expression increased in 11 cases/16 and decreased in 3 cases after chemotherapy. The data relating to the change in staining following chemotherapy appear statistically significant for VEGF expression (<it>p </it>< 0,05), but not for CD31 (<it>p </it>> 0,05).</p> <p>Conclusions</p> <p>Even if the study included few patients, these results confirm that VEGF and CD31 expression is affected by multidrug chemotherapy including HDMTX. The expression of angiogenic factors that increase microvessel density (MVD) can contribute to the penetration of chemotherapeutic drugs into the tumor in the adjuvant stage of treatment. So VEGF could have a paradoxical effect: it is associated with a poor outcome but it could be a potential target for anti-angiogenic therapy.</p

    Human genetic and metabolite variation reveals that methylthioadenosine is a prognostic biomarker and an inflammatory regulator in sepsis.

    Get PDF
    Sepsis is a deleterious inflammatory response to infection with high mortality. Reliable sepsis biomarkers could improve diagnosis, prognosis, and treatment. Integration of human genetics, patient metabolite and cytokine measurements, and testing in a mouse model demonstrate that the methionine salvage pathway is a regulator of sepsis that can accurately predict prognosis in patients. Pathway-based genome-wide association analysis of nontyphoidal Salmonella bacteremia showed a strong enrichment for single-nucleotide polymorphisms near the components of the methionine salvage pathway. Measurement of the pathway's substrate, methylthioadenosine (MTA), in two cohorts of sepsis patients demonstrated increased plasma MTA in nonsurvivors. Plasma MTA was correlated with levels of inflammatory cytokines, indicating that elevated MTA marks a subset of patients with excessive inflammation. A machine-learning model combining MTA and other variables yielded approximately 80% accuracy (area under the curve) in predicting death. Furthermore, mice infected with Salmonella had prolonged survival when MTA was administered before infection, suggesting that manipulating MTA levels could regulate the severity of the inflammatory response. Our results demonstrate how combining genetic data, biomolecule measurements, and animal models can shape our understanding of disease and lead to new biomarkers for patient stratification and potential therapeutic targeting

    Comparative study of in situ N2 rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

    Get PDF
    Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors

    Full text link
    BACKGROUND Larotrectinib is a first-in-class, highly selective tropomyosin receptor kinase (TRK) inhibitor approved to treat adult and pediatric patients with TRK fusion-positive cancer. The aim of this study was to evaluate the efficacy and safety of larotrectinib in patients with TRK fusion-positive primary central nervous system (CNS) tumors. METHODS Patients with TRK fusion-positive primary CNS tumors from two clinical trials (NCT02637687, NCT02576431) were identified. The primary endpoint was investigator-assessed objective response rate (ORR). RESULTS As of July 2020, 33 patients with TRK fusion-positive CNS tumors were identified (median age: 8.9 years; range: 1.3-79.0). The most common histologies were high-grade glioma (HGG; n = 19) and low-grade glioma (LGG; n = 8). ORR was 30% (95% confidence interval [CI]: 16-49) for all patients. In all patients, the 24-week disease control rate was 73% (95% CI: 54-87). Twenty-three of 28 patients (82%) with measurable disease had tumor shrinkage. The 12-month rates for duration of response, progression-free survival, and overall survival were 75% (95% CI: 45-100), 56% (95% CI: 38-74), and 85% (95% CI: 71-99), respectively. Median time to response was 1.9 months (range 1.0-3.8 months). Duration of treatment ranged from 1.2-31.3+ months. Treatment-related adverse events were reported for 20 patients, with Grade 3-4 in 3 patients. No new safety signals were identified. CONCLUSIONS In patients with TRK fusion-positive CNS tumors, larotrectinib demonstrated rapid and durable responses, high disease control rate, and a favorable safety profile

    Subjective Cognitive Decline in Older Adults: An Overview of Self-Report Measures Used Across 19 International Research Studies

    Get PDF
    Research increasingly suggests that subjective cognitive decline (SCD) in older adults, in the absence of objective cognitive dysfunction or depression, may be a harbinger of non-normative cognitive decline and eventual progression to dementia. Little is known, however, about the key features of self-report measures currently used to assess SCD. The Subjective Cognitive Decline Initiative (SCD-I) Working Group is an international consortium established to develop a conceptual framework and research criteria for SCD (Jessen et al., 2014, Alzheimers Dement 10, 844-852). In the current study we systematically compared cognitive self-report items used by 19 SCD-I Working Group studies, representing 8 countries and 5 languages. We identified 34 self-report measures comprising 640 cognitive self-report items. There was little overlap among measures- approximately 75% of measures were used by only one study. Wide variation existed in response options and item content. Items pertaining to the memory domain predominated, accounting for about 60% of items surveyed, followed by executive function and attention, with 16% and 11% of the items, respectively. Items relating to memory for the names of people and the placement of common objects were represented on the greatest percentage of measures (56% each). Working group members reported that instrument selection decisions were often based on practical considerations beyond the study of SCD specifically, such as availability and brevity of measures. Results document the heterogeneity of approaches across studies to the emerging construct of SCD. We offer preliminary recommendations for instrument selection and future research directions including identifying items and measure formats associated with important clinical outcome

    Genome-Wide Association Analysis of Autoantibody Positivity in Type 1 Diabetes Cases

    Get PDF
    The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A)
    • 

    corecore