416 research outputs found

    Tests of Sapphire Crystals Produced with Different Growth Processes for Ultra-stable Microwave Oscillators

    Full text link
    We present the characterization of 8-12 GHz whispering gallery mode resonators machined in high-quality sapphire crystals elaborated with different growth techniques. These microwave resonators are intended to constitute the reference frequency of ultra-stable Cryogenic Sapphire Oscillators. We conducted systematic tests near 4 K on these crystals to determine the unloaded Q-factor and the turnover temperature for whispering gallery modes in the 8-12 GHz frequency range. These characterizations show that high quality sapphire crystals elaborated with the Heat Exchange or the Kyropoulos growth technique are both suitable to meet a fractional frequency stability better than 1x10-15 for 1 s to 10.000 s integration times.Comment: 7 figure

    Alien Registration- Dubois, Benoit Z. (Sanford, York County)

    Get PDF
    https://digitalmaine.com/alien_docs/2684/thumbnail.jp

    Experimental Analysis of Prepreg Tack

    Get PDF
    International audienceA probe tack test apparatus is designed to characterize the tack of carbon-epoxy prepreg. Tests are performed on both pure resin and prepreg. The maximum debonding force seems to be a relevant measure of tack. First, results show that the response of pure resin is similar to that of viscous silicon oil. Second, the shape of the response curve obtained for prepreg beyond the maximum value of the debonding force is mainly due to structural effects. Third, the influence of contact force, contact time, debonding rate, probe temperature and ageing conditions on the prepreg tack is investigated in relation with physical phenomena involved in the debonding phase

    Effect of thermal cycles on the deformation state at the crack tip of crystallizable natural rubber

    Get PDF
    International audienceThis paper deals with the effect of temperature variations on crack tip kinematicsin rubbers, especially in crystallizing rubbers. In such materials, the high deformation levelencountered at the crack tip engenders the formation of crystallites. As a consequence, thecrack tip is reinforced and resists crack growth. However, this phenomenon is signicantly affectedby variations in material temperature. This is classically observed at the macroscopicscale in terms of crack propagation rate and path. In this study, the effect of temperature isstudied at the local scale, by measuring the change in the kinematic eld at the crack tip duringthermal cycles. Results show that, in crystallizable natural rubber, the effect of temperaturedepends on the stretch ratio atained in the zone under consideration. In slightly stretchedzones, the stretch ratio increases with the increase in temperature, whereas it decreases inhighly stretched zones. This highlights the competition between the effects of the variationsin internal energy and in entropy on the thermomechanical response. Moreover, if crystallitesform in highly stretched zones, the increase in temperature leads to crystallite melting,which increases the stretch ratio. This is explained by the fact that crystallites act as llers byconcentrating the stress and therefore by increasing the apparent stiffness of the material

    Imaging Microglial/Macrophage Activation in Spinal Cords of Experimental Autoimmune Encephalomyelitis Rats by Positron Emission Tomography Using the Mitochondrial 18kDa Translocator Protein Radioligand [18F]DPA-714

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Activated microglia/macrophages play a key role in the immunopathogenesis of MS and its corresponding animal models, experimental autoimmune encephalomyelitis (EAE). Microglia activation begins at early stages of the disease and is associated with elevated expression of the 18 kDa mitochondrial translocator protein (TSPO). Thus, positron emission tomography (PET) imaging of microglial activation using TSPO-specific radioligands could be valuable for monitoring disease-associated neuroinflammatory processes. EAE was induced in rats using a fragment of myelin basic protein, yielding acute clinical disease that reflects extensive spinal cord inflammation. Enhanced TSPO expression in spinal cords of EAE rats versus those of controls was confirmed by Western blot and immunohistochemistry. Biodistribution studies in control and EAE rats were performed using the TSPO radioligand [18F]DPA-714 [N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide]. At 1 h after injection, almost fivefold higher levels of [18F]DPA-714 were measured in spinal cords of EAE rats versus controls. The specific binding of [18F]DPA-714 to TSPO in spinal cords was confirmed in competition studies, using unlabeled (R,S)-PK11195 [(R,S)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-carboxamide)] or DPA-714 in excess. MicroPET studies affirm that this differential radioactivity uptake in spinal cords of EAE versus control rats could be detected and quantified. Using [18F]DPA-714, neuroinflammation in spinal cords of EAE-induced rats could be visualized by PET, offering a sensitive technique for monitoring neuroinflammatory lesions in the CNS and particularly in the spinal cord. In addition to current MRI protocols, this approach could provide molecular images of neuroinflammation for detection, monitoring, and research in MS

    A New Development Framework for Multi-Core Processor based Smart-Camera Implementations

    No full text
    International audienceThe exponential evolution of the smart camera processing performances is directly linked to the improvements on hardware processing elements. Nowadays, high processing performances can be reached considering hardware targets which enables a high level of task parallelism to be implemented. Highly regular tasks are good candidate for a reconfigurable logic implementation and less regular parts of the algorithm could be described on the processor. Meanwhile the prototyping time is related to the selected target and the associated development methodology. The implementation on reconfigurable logic is highly efficient in exploiting the intrinsic task parallelism nevertheless can be time consuming using traditional methodology (i.e. Hardware Language Description). Several approaches can be considered to decrease the proto-typing time and to conserve high processing performances for instance implementation based on: • heterogeneous architectures [1] that mixed reconfig-urable logic (i.e. FPGA) and embedded processor, • high-level abstraction description and the associated fast prototyping tools [2][3][4], • multi-core processor architectures such as Digital Signal Processors (DSP), Graphic Processor Units (GPU) or even Generic Purpose Processor (GPP). In this paper, we propose to focus on implementation based on GPP due to the emergence of new generation of low-cost multi-core processors which enables high processing performances to be reached and therefore to match with some constraints of complex image-processing algorithms. The key idea of this development is to be able to propose fast prototyping using a low-cost smart camera based on this kind of target. Hence, we have developed a new framework dedicated to multi-core processor associated with an image sensor. The framework aims to offer a high degree of flexibility for managing the tasks and the memory allocation. Hence, the framework enables the priority and the allocation of each task to be controlled. Each task (or binary) is independent in terms of execution nevertheless it can be linked and controlled using a higher hierarchy level binary. The image acquisition task can be completely independent from the other processing tasks. One processor's core can even be dedicated to the acquisition task to guarantee a constant input data-flow to the image processing tasks. The data exchange is defined in POSIX, each binary can be therefore coded differently (for instance in C or C++, or in another languages) and offer a relative Operating System (OS) compatibility. The memory management enables a sequence of images to be automatically stored and a simultaneous access to be granted for several processings. The framework includes an interface dedicated to the management of the tasks: the user can add or suppress a binary during the runtime, logs or processing results can be visualised for each task

    Recent crustal movements

    Get PDF

    A Cryogenic Sapphire Resonator Oscillator with 1e-16 mid-term fractional frequency stability

    Full text link
    We report in this letter the outstanding frequency stability performances of an autonomous cryogenique sapphire oscillator presenting a flicker frequency noise floor below 2e-16 near 1,000 s of integration time and a long term Allan Deviation (ADEV) limited by a random walk process of 1e-18/sqr(tau). The frequency stability qualification at this level called for the implementation of sophisticated instrumentation associated with ultra-stable frequency references and ad hoq averaging and correlation methods.Comment: 4 pages, 2 figure

    Hydrodynamical simulations of galaxy formation with non-Gaussian initial conditions

    Full text link
    Collisionless simulations of structure formation with significant local primordial non-Gaussianities at Mpc scales have shown that a non-Gaussian tail favouring underdensities, with a negative fNLf_{\rm NL} parameter, can significantly change the merging history of galaxy-sized dark matter halos, which then typically assemble later than in vanilla Λ\LambdaCDM. Moreover, such a small-scale negative fNLf_{\rm NL} could have interesting consequences for the cosmological S8S_8 tension. Here, we complement our previous work on collisionless simulations with new hydrodynamical simulations of galaxy formation in boxes of 30 Mpc/hh, using the {\sc RAMSES} code. In particular, we show that all feedback prescriptions being otherwise identical, simulations with a negative fNL∼−1000f_{\rm NL} \sim -1000 on small scales, hence forming galaxies a bit later than in vanilla Λ\LambdaCDM, allow to form simulated galaxies with more disky kinematics than in the vanilla case. Therefore, such small-scale primordial non-Gaussianities could potentially help alleviate, simultaneously, tensions in cosmology and galaxy formation. These hydrodynamical simulations on small scales will need to be complemented with larger box simulations with scale-dependent non-Gaussianities, to statistically confirm these trends and explore their observational consequences in further detail.Comment: 14 pages, 8 figures, comments welcome :

    First-principles prediction of lattice coherency in van der Waals heterostructures

    Full text link
    The emergence of superconductivity in slightly-misaligned graphene bilayer [1] and moir\'e excitons in MoSe2_2-WSe2_2 van der Waals (vdW) heterostructures [2] is intimately related to the formation of a 2D superlattice in those systems. At variance, perfect primitive lattice matching of the constituent layers has also been reported in some vdW-heterostructures [3-5], highlighting the richness of interfaces in the 2D world. In this work, the determination of the nature of such interface, from first principles, is demonstrated. To do so, an extension of the Frenkel-Kontorova (FK) model [6] is presented, linked to first-principles calculations, and used to predict lattice coherency for a set of 56 vdW-heterostructures. Computational predictions agree with experiments, when available. New superlattices as well as perfectly-matching interfaces are predicted.Comment: 16 pages, 3 figure
    • …
    corecore