First-principles prediction of lattice coherency in van der Waals heterostructures

Abstract

The emergence of superconductivity in slightly-misaligned graphene bilayer [1] and moir\'e excitons in MoSe2_2-WSe2_2 van der Waals (vdW) heterostructures [2] is intimately related to the formation of a 2D superlattice in those systems. At variance, perfect primitive lattice matching of the constituent layers has also been reported in some vdW-heterostructures [3-5], highlighting the richness of interfaces in the 2D world. In this work, the determination of the nature of such interface, from first principles, is demonstrated. To do so, an extension of the Frenkel-Kontorova (FK) model [6] is presented, linked to first-principles calculations, and used to predict lattice coherency for a set of 56 vdW-heterostructures. Computational predictions agree with experiments, when available. New superlattices as well as perfectly-matching interfaces are predicted.Comment: 16 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions