11 research outputs found

    Campylobacter jejuni colonization promotes the translocation of Escherichia coli to extra-intestinal organs and disturbs the short-chain fatty acids profiles in the chicken gut

    Get PDF
    For a long time Campylobacter was only considered as a commensal microorganism in avian hosts restricted to the ceca, without any pathogenic features. The precise reasons for the symptomless chicken carriers are still unknown, but investigations of the gastrointestinal ecology of broiler chickens may improve our understanding of the microbial interactions with the host. Therefore, the current studies were conducted to investigate the effects of Campylobacter jejuni colonization on Escherichia coli translocation and on the metabolic end products (short-chain fatty acids, SCFAs). Following oral infection of 14 day old broiler chickens with 1 Ă— 108 CFU of Campylobacter jejuni NCTC 12744 in two independent animal trials, it was found that C. jejuni heavily colonized the intestine and disseminate to extra-intestinal organs. Moreover, in both animal trials, the findings revealed that C. jejuni promoted the translocation of E. coli with a higher number encountered in the spleen and liver at 14 days post infection (dpi). In addition, Campylobacter affected the microbial fermentation in the gastrointestinal tract of broilers by reducing the amount of propionate, isovalerate, and isobutyrate in the cecal digesta of the infected birds at 2 dpi and, at 7 and 14 dpi, butyrate, isobutyrate, and isovalerate were also decreased. However, in the jejunum, the C. jejuni infection lowered only butyrate concentrations at 14 dpi. These data indicated that C. jejuni may utilize SCFAs as carbon sources to promote its colonization in the chicken gut, suggesting that Campylobacter cannot only alter gut colonization dynamics but might also influence physiological processes due to altered microbial metabolite profiles. Finally, the results demonstrated that C. jejuni can cross the intestinal epithelial barrier and facilitates the translocation of Campylobacter itself as well as of other enteric microorganisms such as E. coli to extra-intestinal organs of infected birds. Altogether, our findings suggest that the Campylobacter carrier state in chicken is characterised by multiple changes in the intestinal barrier function, which supports multiplication and survival within the host

    XENOFOOD—An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides—Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells

    No full text
    Entomopathogenic bacteria are obligate symbionts of entomopathogenic nematode (EPN) species. These bacteria biosynthesize and release non-ribosomal-templated hybrid peptides (NR-AMPs), with strong, and large-spectral antimicrobial potential, capable of inactivating pathogens belonging to different prokaryote, and eukaryote taxa. The cell-free conditioned culture media (CFCM) of Xenorhabdus budapestensis and X. szentirmaii efficiently inactivate poultry pathogens like Clostridium, Histomonas, and Eimeria. To learn whether a bio-preparation containing antimicrobial peptides of Xenorhabdus origin with accompanying (in vitro detectable) cytotoxic effects could be considered a safely applicable preventive feed supplement, we conducted a 42-day feeding experiment on freshly hatched broiler cockerels. XENOFOOD (containing autoclaved X. budapestensis, and X. szentirmaii cultures developed on chicken food) were consumed by the birds. The XENOFOOD exerted detectable gastrointestinal (GI) activity (reducing the numbers of the colony-forming Clostridium perfringens units in the lower jejunum. No animal was lost in the experiment. Neither the body weight, growth rate, feed-conversion ratio, nor organ-weight data differed between the control (C) and treated (T) groups, indicating that the XENOFOOD diet did not result in any detectable adverse effects. We suppose that the parameters indicating a moderate enlargement of bursas of Fabricius (average weight, size, and individual bursa/spleen weight-ratios) in the XENOFOOD-fed group must be an indirect indication that the bursa-controlled humoral immune system neutralized the cytotoxic ingredients of the XENOFOOD in the blood, not allowing to reach their critical cytotoxic concentration in the sensitive tissues

    Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species

    No full text
    Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic–nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic–nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered “easy-PACId” research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential
    corecore