73 research outputs found

    Multiplicative relations with conjugate algebraic numbers

    No full text
    We study which algebraic numbers can be represented by a product of conjugate over a fixed number field K algebraic numbers in fixed integer powers. The problem is nontrivial if the sum of these integer powers is equal to zero. The norm over K of such number must be a root of unity. We show that there are infinitely many algebraic numbers whose norm over K is a root of unity and which cannot be represented by such product. Conversely, every algebraic number can be expressed by every sufficiently long product in conjugate over K algebraic numbers. We also construct nonsymmetric algebraic numbers, i.e., such that none elements of the respective Galois group acting on the full set of their conjugates form a Latin square.Досліджено, які алгебраїчні числа можуть бути зображені у вигляді добутку спряжених над фіксованим числовим полем K алгебраїчних чисел у фіксованих цілих степенях. Розглядувана задача є нетривіальною, якщо сума цих цілих степенів дорівнює нулю. Норма над K такого числа має бути коренем з одиниці. Показано, що існує нескінченно багато алгебраїчних чисел, норма над K яких є коренем з одиниці і які не можуть бути зображені згаданим добутком. Навпаки, кожне алгебраїчне число можна виразити будь-яким достатньо довгим добутком спряжених над K алгебраїчних чисел. Побудовано також несиметричні алгебраїчні числа, тобто такі, що жоден елемент відповідної групи Галуа, яка діє на повній множині їхніх спряжень, не формує Латинський квадрат

    On Waring's problem for a prime modulus

    Get PDF
    We obtain a lower bound for the minimum over positive integers such that the sum of certain powers of some integers is divisible by a prime number, but none of these integers is divisible by this prime number

    A degree problem for two algebraic numbers and their sum

    Get PDF
    For all but one positive integer triplet (a; b; c) with a < b < c and b < 6, we decide whether there are algebraic numbers α,β and γ of degrees a, b and y, respectively, such that α+β+γ = 0. The undecided case (6; 6; 8) will be included in another paper. These results imply, for example, that the sum of two algebraic numbers of degree 6 can be of degree 15 but cannot be of degree 10. We also show that if a positive integer triplet (a; b; c) satisfies a certain triangle-like inequality with respect to every prime number then there exist algebraic numbers α,β γ of degrees a, b, c such that α+β+γ = 0. We also solve a similar problem for all (a; b; c) with a < b < c and b <6 by finding for which a, b, c there exist number fields of degrees a and b such that their compositum has degree c. Further, we have some results on the multiplicative version of the first problem, asking for which triplets (a; b; c) there are algebraic numbers and α, β and γ of degrees a, b and c, respectively, such that αβγ = 1

    Variations on the theme of Hilbert's theorem 90

    No full text

    On Heights of Polynomials with Real Roots

    No full text
    We prove Schinzel’s theorem about the lower bound of the Mahler measure of totally real polynomials. Under certain additional conditions this theorem is strengthened. We also consider certain Chebyshev polynomials in order to investigate how sharp are the lower bounds for the heights
    corecore