21 research outputs found
Baby Cassava: An Alternative Marketing Strategy for Freshly Cut Cassava
There are many procedures for obtaining minimally processed fruits and vegetables, aiming at adding value and maintaining the quality for a longer period. Cassava is a root that adapts to minimum processing technology, because the tissues are more resistant, what helps in obtaining different cut shapes and formats. However, it is a root susceptible to browning and microbiological contamination. In this chapter, methodologies and procedures are described to obtain alternative formats for minimally processed cassava, which was generally denominated “babycassava”, called “babytolete”, “cateto”, and “rubiene”. Besides that, some preharvest and postharvest factors that influence the shape and quality of “babycassava” formats will be addressed. It was verified that preharvest factors could influence the quantitative and qualitative aspects, resulting in browning of the minimally processed root. Some of the factors studied seem to regulate key enzymes in which they mediate oxidative reactions that cause browning, such as polyphenol oxidase and peroxidase, and other enzymes that participate in the reactive oxygen species (ROS) elimination process. In this way, the turning stage of “babycassava” manufacturing removes the parenchyma, minimizing the effect of browning-related enzymes
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Alternatives for browning control of fresh-cut mango treated with pulsed ultraviolet radiation
A radiação ultravioleta pulsada (UVp) é uma alternativa para o controle de micro- organismos em mangas minimamente processadas. Contudo, a UVp associada ao corte e a temperatura de conservação fora do recomendado para produtos minimamente processados (±12oC), induz o escurecimento dos tecidos. Assim, o objetivo deste estudo foi controlar o escurecimento de manga minimamente processada e tratada com UVp, tendo como suporte três hipóteses. No primeiro capítulo, foi testada a hipótese de que a temperatura de 5oC, recomendada para as frutas minimamente processadas, é suficiente para controlar o escurecimento. Contudo, sabe-se que nos supermercados, a temperatura média das gôndolas expositoras é 12±2oC. Nessa temperatura, o escurecimento poderá ser controlado com o uso de compostos inibidores da ação do etileno ou antioxidantes. Assim, no segundo capítulo, utilizou-se um bloqueador do etileno, o 1- Metiolciclopropeno (1-MCP), partindo do pressuposto que o etileno é o responsável por estimular as reações do escurecimento. E, por fim, no terceiro capítulo, foram utilizadas a quitosana e uma solução antioxidante (ácido ascórbico + ácido cítrico + cloreto de cálcio), tendo como referência os seus efeitos no controle do escurecimento. Das hipóteses testadas, apenas a refrigeração (5oC) foi suficiente para controlar o escurecimento de mangas minimamente processadas irradiadas com UVp.Ultraviolet-pulsed radiation (UVp) is an alternative to microorganism control in fresh- cut mango. However, UVp causes browning in fresh-cut fruit‟s tissues, mainly due the cut and the temperature storage (±12°C). This temperature is above those recommended to minimally processed products (±5°C). This project aimed the browning's control of the fresh-cut mango treated with UVp, on basis of three hypothesis. In the first chapter, the hypothesis tested for browning control was refrigeration (5°C): the recommended conservation temperature for fresh-cut products. Nevertheless, it is known that in supermarkets, the refrigerated display average temperature is 12 ± 2°C. Under this temperature, ethylene inhibitors or antioxidant-compounds can control browning. Thus, in the second chapter, we used 1-Metiolciclopropeno (1-MCP) as an ethylene blocker, because that ethylene is responsible for stimulating browning. Finally, in the third chapter, on basis of their effects on browning control, chitosan or antioxidant solutions (ascorbic acid + citric acid + calcium chloride) were used. Of the tested hypotheses, only the refrigeration (5°C) has proved to be sufficient for browning control of the fresh-cut mango treated with UVp.Coordenação de Aperfeiçoamento de Pessoal de Nível Superio
PROCESSING AND STABILITY OF MIXED JELLY OF WATERMELON AND TAMARIND
O presente trabalho teve por objetivo avaliar a conservação da geléia mista de melancia e tamarindo através de parâmetros físico-químicos durante o armazenamento. Foi utilizado o delineamento de blocos casualizados, em esquema fatorial 3x4, com três repetições. Sendo três tempos de armazenamento (0, 30 e 60 dias) e quatro formulações de geléias: F1 (100% melancia), F2 (75% melancia: 6% tamarindo), F3 (75% melancia: 12% tamarindo) e F4 (12% tamarindo), todas com a proporção de polpa e açúcar de 1:0,5 e concentração final de sólidos solúveis de 68%. As geléias foram armazenadas à temperatura ambiente (28ºC), e avaliadas de acordo com parâmetros visuais e fisico-químicos (pH, sólidos solúveis, acidez total e ácido ascórbico). Os dados das variáveis estudadas foram submetidos à análise de variância e suas médias comparadas pelo teste de Tukey ao nível de 5% de probabilidade. A formulação F3 (75% melancia: 12% tamarindo) foi a geléia que obteve maior estabilidade para os parâmetros fisico-químicos avaliados
Processamento e conservação de geléia mista de melancia e tamarindo
The present work had for objective to evaluate the stability of the mixed jelly of watermelon and
tamarind through physiochemical parameters during the storage. The delineamento of blocks casualizados was used, in
factorial outline 3x4, with three repetitions. Being three times of storage (0, 30 and 60 days) and four formulations of
jellies: F1 (100% watermelon), F2 (75% watermelon: 6% tamarind), F3 (75% watermelon: 12% tamarind) and F4 (12%
tamarind), all with the pulp proportion and sugar of 1:0,5 and final concentration of soluble solids of 68%. The jellies
were stored to room temperature (28oC), and appraised in agreement with visual and physiochemical parameters (pH,
soluble solids, total acidity and ascorbic acid). The data of the studied variables were submitted to the variance analysis
and their averages compared by the test of Tukey at the level of 5% of probability. The formulation F3 (75%
watermelon: 12% tamarind) it was the jelly that obtained larger stability for the appraised physiochemical parameters.O presente trabalho teve por objetivo avaliar a conservação da geléia mista de
melancia e tamarindo através de parâmetros físico-químicos durante o armazenamento. Foi
utilizado o delineamento de blocos casualizados, em esquema fatorial 3x4, com três repetições.
Sendo três tempos de armazenamento (0, 30 e 60 dias) e quatro formulações de geléias: F1 (100%
melancia), F2 (75% melancia: 6% tamarindo), F3 (75% melancia: 12% tamarindo) e F4 (12%
tamarindo), todas com a proporção de polpa e açúcar de 1:0,5 e concentração final de sólidos
solúveis de 68%. As geléias foram armazenadas à temperatura ambiente (28oC), e avaliadas de
acordo com parâmetros visuais e fisico-químicos (pH, sólidos solúveis, acidez total e ácido
ascórbico). Os dados das variáveis estudadas foram submetidos à análise de variância e suas médias
comparadas pelo teste de Tukey ao nível de 5% de probabilidade. A formulação F3 (75% melancia:
12% tamarindo) foi a geléia que obteve maior estabilidade para os parâmetros fisico-químicos
avaliados.Este estudio tuvo como objetivo evaluar la conservación de la jalea de sandía y tamarindo mezclada a
través de parámetros físicos y químicos durante el almacenamiento. El diseño experimental consistió en bloques al azar
en un diseño factorial 3x4 con tres repeticiones. Con tres tiempos de almacenamiento (0, 30 y 60 días) y cuatro
formulaciones de los atascos: F1 (sandía 100%), F2 (75% de la sandía: 6% de tamarindo), F3 (75% de la sandía: 12%
de tamarindo) y F4 ( 12% de tamarindo), todos con la proporción de pastas y el azúcar 1:0,5 y concentración final de
sólidos solubles de 68%. Los atascos fueron almacenadas a temperatura ambiente (28 o C) y evaluadas de acuerdo a los
parámetros visuales y físico-químicos (pH, sólidos solubles, acidez total y ácido ascórbico). Los datos de las variables
se sometieron a análisis de varianza y las medias comparadas por el test de Tukey al 5% de probabilidad. La
formulación F3 (75% de la sandía: 12% de tamarindo) fue la gelatina que había una mayor estabilidad de los parámetros
físico-químicos medido