212 research outputs found

    Seagrass can mitigate negative ocean acidification effects on calcifying algae

    Get PDF
    The ultimate effect that ocean acidification (OA) and warming will have on the physiology of calcifying algae is still largely uncertain. Responses depend on the complex interactions between seawater chemistry, global/local stressors and species-specific physiologies. There is a significant gap regarding the effect that metabolic interactions between coexisting species may have on local seawater chemistry and the concurrent effect of OA. Here, we manipulated CO2 and temperature to evaluate the physiological responses of two common photoautotrophs from shallow tropical marine coastal ecosystems in Brazil: the calcifying alga Halimeda cuneata, and the seagrass Halodule wrightii. We tested whether or not seagrass presence can influence the calcification rate of a widespread and abundant species of Halimeda under OA and warming. Our results demonstrate that under elevated CO2, the high photosynthetic rates of H. wrightii contribute to raise H. cuneata calcification more than two-fold and thus we suggest that H. cuneata populations coexisting with H. wrightii may have a higher resilience to OA conditions. This conclusion supports the more general hypothesis that, in coastal and shallow reef environments, the metabolic interactions between calcifying and non-calcifying organisms are instrumental in providing refuge against OA effects and increasing the resilience of the more OA-susceptible species.E.B. would like to thank the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES) for Masters funding. Funding for this project came from the Synergism grant (CNPq 407365/2013-3). We extend our thanks to the Brazil-based Projeto Coral Vivo and its sponsor PetroBras Ambiental for providing the Marine Mesocosm structure and experimental assistance.info:eu-repo/semantics/publishedVersio

    Participatory planning and quality assessment: contributions of a nursing management technology

    Get PDF
    Objective: to analyze the outcomes of participatory planning and quality assessment of the nursing care provided in a hospital ward using a nursing management technology. Method: Convergent care research focuses on research and practice intervention, developed in a hospital in southern Brazil from April to August 2016. Participatory planning and quality evaluation was performed using the PRAXIS® technology. Results: In the participatory planning, a survey of needs/problems was carried out by 33 professionals followed by 5 workshops, where mission, guiding principles, 4 priority problems, expected results, objectives and plans of activities were defined. For quality evaluation, two indicators were used: satisfaction and notification of adverse events. The evaluation was carried out with 101 patients and /or relatives, predominating “great or good”. Adverse events, 28 records, predominating medication errors. Conclusion: Participatory planning and quality assessment are essential to improve nursing care management and the PRAXIS® technological innovation has been a useful resource.info:eu-repo/semantics/publishedVersio

    The passive biomechanics of human pelvic collecting lymphatic vessels

    Get PDF
    The lymphatic system has a major significance in the metastatic pathways in women’s cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport

    VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis

    Get PDF
    Tumour angiogenesis has become an important target for antitumour therapy, with most current therapies aimed at blocking the VEGF pathway. However, not all tumours are responsive to VEGF blockers, and some tumours that are responsive initially may become resistant during the course of treatment, thus there is a need to explore other angiogenesis signalling pathways. Recently, the Delta-Notch pathway, and particularly the ligand Delta-like 4 (Dll4), was identified as a new target in tumour angiogenesis. An important feature in angiogenesis is the manifold ways in which the VEGF and Delta-Notch pathways interact. The emerging picture is that the VEGF pathway acts as a potent upstream activating stimulus for angiogenesis, whereas Delta-Notch helps to guide cell fate decisions that appropriately shape the activation. Here we review the two signalling pathways and what is currently known about the ways in which they interact during tumour angiogenesis

    Nanomechanics of individual aerographite tetrapods

    Get PDF
    R.A., O.L. and K.S. would like to thank the German Research Foundation (DFG) for the financial support under schemes AD 183/17-1 and SFB 986-TP-B1, respectively, and the Graphene FET Flagship. R.M. and D.E. would like to thank for financial support from Latvian Council of Science, no. 549/2012. N.M.P. is supported by the European Research Council (ERC PoC 2015 SILKENE no. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 ‘Polymer Composites’, no. 696656) and under the FET Proactive (‘Neurofibres’ no. 732344). S.S. acknowledges support from SILKENE
    corecore