550 research outputs found

    Achievable efficiencies for probabilistically cloning the states

    Full text link
    We present an example of quantum computational tasks whose performance is enhanced if we distribute quantum information using quantum cloning. Furthermore we give achievable efficiencies for probabilistic cloning the quantum states used in implemented tasks for which cloning provides some enhancement in performance.Comment: 9 pages, 8 figure

    Whistle detection and classification for whales based on convolutional neural networks

    Get PDF
    Passive acoustic observation of whales is an increasingly important tool for whale research. Accurately detecting whale sounds and correctly classifying them into corresponding whale species are essential tasks, especially in the case when two species of whales vocalize in the same observed area. Whistles are vital vocalizations of toothed whales, such as killer whales and long-finned pilot whales. In this paper, based on deep convolutional neural networks (CNNs), a novel method is proposed to detect and classify whistles of both killer whales and long-finned pilot whales. Compared with traditional methods, the proposed one can automatically learn the sound characteristics from the training data, without specifying the sound features for classification and detection, and thus shows better adaptability to complex sound signals. First, the denoised sound to be analyzed is sent to the trained detection model to estimate the number and positions of the target whistles. The detected whistles are then sent to the trained classification model, which determines the corresponding whale species. A GUI interface is developed to assist with the detection and classification process. Experimental results show that the proposed method can achieve 97% correct detection rate and 95% correct classification rate on the testing set. In the future, the presented method can be further applied to passive acoustic observation applications for some other whale or dolphin species

    Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis

    Get PDF
    The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (Îł-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte

    Disguised Bionic Sonar Signal Waveform Design with Its Possible Camouflage Application Strategy for Underwater Sensor Platforms

    Get PDF
    IEEE The covertness of an active sonar is a very important issue and the sonar signal waveform design problem is studied to improve covertness of the system. Many marine mammals produce call pulses for communication and echolocation, and existing interception systems normally classify these biological signals as ocean noise and filter them out. Based on this, a disguised sonar signal waveform design approach with its camouflage application strategy for underwater sensor platforms is proposed by utilizing bio-inspired steganography. We first construct bionic sonar signal waveforms which are very close to the true whale whistle, and then embed these constructed bionic sonar signal waveforms into the true whale call trains to hide the real sonar signal waveforms. According to the time-frequency (TF) structure of the true whale whistle, a bionic sonar signal model is established to generate the proposed sonar signal waveforms. A single sonar signal is used to measure the range of the target and a combination of two sonar signals is utilized for measuring its speed. A high-performance range and speed measurement algorithm is deduced in detail. Based on the constructed signal waveforms and the characteristics of false killer whale call trains, a camouflage application strategy is designed to improve the camouflage ability of the sonar signal sequence. Finally, simulation results are provided to verify the performance of the proposed method

    Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds

    Get PDF
    Pilot whales produce clicks, whistles and pulsed calls, which form a key component of their social lives. The three types of sound driven by their behavioural states are not directly observable. The mathematical tools which compute properties of sound are natural candidates for analysing the possible relationship between pilot whale sound and behaviour. In this paper, the wideband ambiguity function is used to compute the range resolution, speed resolution, Doppler tolerance, sidelobe-to-mainlobe suppression ratio of the range ambiguity function and sidelobe-to-mainlobe suppression ratio of the speed ambiguity function for pilot whale sound, which can be used to evaluate the abilities of pilot whale sound in detecting targets and resisting the influence of relative speed. Statistical results show that clicks have the best range resolution and its range ambiguity functions have the lowest sidelobe-to-mainlobe suppression ratio. Pulsed calls and part of the whistles have the best speed resolution and its speed ambiguity functions have the lowest sidelobe-to-mainlobe suppression ratio. The other part of whistles has a large Doppler tolerance. Analyzing the five parameters of different types of sound and the corresponding behaviour, we then reach a better understanding of the relationship between pilot whale sound and pilot whale behaviour

    Modeling and Experimental Testing of an Unmanned Surface Vehicle with Rudderless Double Thrusters.

    Get PDF
    Motion control of unmanned surface vehicles (USVs) is a crucial issue in sailing performance and navigation costs. The actuators of USVs currently available are mostly a combination of thrusters and rudders. The modeling for USVs with rudderless double thrusters is rarely studied. In this paper, the three degrees of freedom (DOFs) dynamic model and propeller thrust model of this kind of USV were derived and combined. The unknown parameters of the propeller thrust model were reduced from six to two. In the three-DOF model, the propulsion of the USV was completely provided by the resultant force generated by double thrusters and the rotational moment was related to the differential thrust. It combined the propeller thrust model to represent the thrust in more detail. We performed a series of tests for a 1.5 m long, 50 kg USV, in order to obtain the model parameters through system identification. Then, the accuracy of the modeling and identification results was verified by experimental testing. Finally, based on the established model and the proportional derivative+line of sight (PD+LOS) control algorithm, the path-following control of the USV was achieved through simulations and experiments. All these demonstrated the validity and practical value of the established model

    Exciton entanglement in two coupled semiconductor microcrystallites

    Full text link
    Entanglement of the excitonic states in the system of two coupled semiconductor microcrystallites, whose sizes are much larger than the Bohr radius of exciton in bulk semiconductor but smaller than the relevant optical wavelength, is quantified in terms of the entropy of entanglement. It is observed that the nonlinear interaction between excitons increases the maximum values of the entropy of the entanglement more than that of the linear coupling model. Therefore, a system of two coupled microcrystallites can be used as a good source of entanglement with fixed exciton number. The relationship between the entropy of the entanglement and the population imbalance of two microcrystallites is numerically shown and the uppermost envelope function for them is estimated by applying the Jaynes principle.Comment: 16 pages, 6 figure

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic
    • …
    corecore