74 research outputs found

    Nonnegative Matrix Factorization Numerical Method for Integrated Photonic Cavity Based Spectroscopy

    Get PDF
    Nonnegative matrix factorization numerical method has been used to improve the spectral resolution of integrated photonic cavity based spectroscopy. Based on the experimental results for integrated photonic cavity device on Optics Letters 32, 632 (2007), the theoretical results show that the spectral resolution can be improved more than 3 times from 5.5 nm to 1.8 nm. It is a promising way to release the difficulty of fabricating high-resolution devices

    3D Facial Similarity Measure Based on Geodesic Network and Curvatures

    Get PDF
    Automated 3D facial similarity measure is a challenging and valuable research topic in anthropology and computer graphics. It is widely used in various fields, such as criminal investigation, kinship confirmation, and face recognition. This paper proposes a 3D facial similarity measure method based on a combination of geodesic and curvature features. Firstly, a geodesic network is generated for each face with geodesics and iso-geodesics determined and these network points are adopted as the correspondence across face models. Then, four metrics associated with curvatures, that is, the mean curvature, Gaussian curvature, shape index, and curvedness, are computed for each network point by using a weighted average of its neighborhood points. Finally, correlation coefficients according to these metrics are computed, respectively, as the similarity measures between two 3D face models. Experiments of different persons’ 3D facial models and different 3D facial models of the same person are implemented and compared with a subjective face similarity study. The results show that the geodesic network plays an important role in 3D facial similarity measure. The similarity measure defined by shape index is consistent with human’s subjective evaluation basically, and it can measure the 3D face similarity more objectively than the other indices

    Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, and Suppressing Oxidative Stress and Apoptosis in Rats

    Get PDF
    Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury (AKI) due to apoptosis induced in renal tubular cells. Our previous study demonstrated the novel N-acetylcysteine amide (NACA); the amide form of N-acetyl cysteine (NAC) prevented renal tubular cells from contrast-induced apoptosis through inhibiting p38 MAPK pathway in vitro. In the present study, we aimed to compare the efficacies of NACA and NAC in preventing CIN in a well-established rat model and investigate whether thioredoxin-1 (Trx1) and apoptosis signal-regulating kinase 1 (ASK1) act as the potential activator for p38 MAPK. NACA significantly attenuated elevations of serum creatinine, blood urea nitrogen, and biomarkers of AKI. At equimolar concentration, NACA was more effective than NAC in reducing histological changes of renal tubular injuries. NACA attenuated activation of p38 MAPK signal, reduced oxidative stress, and diminished apoptosis. Furthermore, we demonstrated that contrast exposure resulted in Trx1 downregulation and increased ASK1/p38 MAPK phosphorylation, which could be reversed by NACA and NAC. To our knowledge, this is the first report that Trx1 and ASK1 are involved in CIN. Our study highlights a renal protective role of NACA against CIN through modulating Trx1 and ASK1/p38 MAPK pathway to result in the inhibition of apoptosis among renal cells

    Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    Full text link
    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment

    3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    No full text
    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate

    3D Face Model Super-Resolution Based on Radial Curve Estimation

    No full text
    Consumer depth cameras bring about cheap and fast acquisition of 3D models. However, the precision and resolution of these consumer depth cameras cannot satisfy the requirements of some 3D face applications. In this paper, we present a super-resolution method for reconstructing a high resolution 3D face model from a low resolution 3D face model acquired from a consumer depth camera. We used a group of radial curves to represent a 3D face. For a given low resolution 3D face model, we first extracted radial curves on it, and then estimated their corresponding high resolution ones by radial curve matching, for which Dynamic Time Warping (DTW) was used. Finally, a reference high resolution 3D face model was deformed to generate a high resolution face model by using the radial curves as the constraining feature. We evaluated our method both qualitatively and quantitatively, and the experimental results validated our method

    Application of Three-dimensional Laser Scanning Technology in the Teaching Practice of Surveying and Mapping of Ancient Buildings

    No full text
    Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping, this paper briefly describes the working principle and flow of three-dimensional laser scanning technology. Based on the practical application, this paper puts forward the discussion of related problems and matters needing attention. This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings

    Exploration on the Teaching Method for Surveying and Mapping Practice in Ancient Architecture

    No full text
    Since the introduction of the architecture course, the practice of surveying and mapping of ancient architecture has always been an important compulsory course in the professional course of architecture in colleges and universities in China. Against the background of the new era, the teaching methods used so far can no longer fully meet the needs of the development of the times and the construction of "Double First-Class" initiative. This paper explores deeply from the aspects of organizational planning, technical support and achievement transformation, in order to enrich the teaching methods for ancient architecture surveying and mapping practice course in architecture major, and finally improve the teaching level and improve the teaching effect
    • …
    corecore