7 research outputs found

    Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine

    No full text
    Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology

    Breast Cancer and the Other Non-Coding RNAs

    No full text
    Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised

    Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy

    No full text
    Cold atmospheric plasma has great potential for use in modern medicine. It has been used in the clinical treatment of skin diseases and chronic wounds, and in laboratory settings it has shown effects on selective decrease in tumour-cell viability, reduced tumour mass in animal models and stem-cell proliferation. Many researchers are currently focusing on its application to internal structures and the use of plasma-activated liquids in tolerated and effective human treatment. There has also been analysis of plasma’s beneficial synergy with standard pharmaceuticals to enhance their effect. Cold atmospheric plasma triggers various responses in tumour cells, and this can result in epigenetic changes in both DNA methylation levels and histone modification. The expression and activity of non-coding RNAs with their many important cell regulatory functions can also be altered by cold atmospheric plasma action. Finally, there is ongoing debate whether plasma-produced radicals can directly affect DNA damage in the nucleus or only initiate apoptosis or other forms of cell death. This article therefore summarises accepted knowledge of cold atmospheric plasma’s influence on epigenetic changes, the expression and activity of non-coding RNAs, and DNA damage and its effect in synergistic treatment with routinely used pharmaceuticals
    corecore