88 research outputs found

    On an inverse problem for anisotropic conductivity in the plane

    Full text link
    Let Ω^R2\hat \Omega \subset \mathbb R^2 be a bounded domain with smooth boundary and σ^\hat \sigma a smooth anisotropic conductivity on Ω^\hat \Omega. Starting from the Dirichlet-to-Neumann operator Λσ^\Lambda_{\hat \sigma} on Ω^\partial \hat \Omega, we give an explicit procedure to find a unique domain Ω\Omega, an isotropic conductivity σ\sigma on Ω\Omega and the boundary values of a quasiconformal diffeomorphism F:Ω^ΩF:\hat \Omega \to \Omega which transforms σ^\hat \sigma into σ\sigma.Comment: 9 pages, no figur

    New global stability estimates for the Gel'fand-Calderon inverse problem

    Full text link
    We prove new global stability estimates for the Gel'fand-Calderon inverse problem in 3D. For sufficiently regular potentials this result of the present work is a principal improvement of the result of [G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal. 27 (1988), 153-172]

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Explicit Stabilised Gradient Descent for Faster Strongly Convex Optimisation

    Get PDF
    This paper introduces the Runge-Kutta Chebyshev descent method (RKCD) for strongly convex optimisation problems. This new algorithm is based on explicit stabilised integrators for stiff differential equations, a powerful class of numerical schemes that avoid the severe step size restriction faced by standard explicit integrators. For optimising quadratic and strongly convex functions, this paper proves that RKCD nearly achieves the optimal convergence rate of the conjugate gradient algorithm, and the suboptimality of RKCD diminishes as the condition number of the quadratic function worsens. It is established that this optimal rate is obtained also for a partitioned variant of RKCD applied to perturbations of quadratic functions. In addition, numerical experiments on general strongly convex problems show that RKCD outperforms Nesterov's accelerated gradient descent

    Solution of the time-domain inverse resistivity problem in the model reduction framework Part I. One-dimensional problem with SISO data

    No full text
    none3sixnoneV. Druskin; V. Simoncini; M. ZaslavskyV. Druskin; V. Simoncini; M. Zaslavsk

    Adaptive tangential interpolation in rational Krylov subspaces for MIMO model reduction data

    No full text
    Model reduction approaches have been shown to be powerful techniques in the numerical simulation of very large dynamical systems. The presence of multiple inputs and outputs (MIMO systems) makes the reduction process even more challenging. We consider projection-based approaches where the reduction of complexity is achieved by direct projection of the problem onto a rational Krylov subspace of significantly smaller dimension. We present an effective way to treat multiple inputs by dynamically choosing the next direction vectors to expand the space. We apply the new strategy to the approximation of the transfer matrix function and to the solution of the Lyapunov matrix equation. Numerical results confirm that the new approach is competitive with respect to state-of-the-art methods both in terms of CPU time and memory requirements
    corecore