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1 Introduction

Optimisation is at the heart of many applied mathematical and statistical problems,
while its beauty lies in the simplicity of describing the problem in question. In this
work, given a function f : Rd → R, we are interested in finding a minimiser x∗ ∈ Rd

of the problem
min
x∈Rd

f (x). (1.1)

We make the common assumption throughout that f ∈F`,L, namely, the set of `-
strongly convex differentiable functions that have L-Lipschitz continuous deriva-
tive [13]. Corresponding to f is its gradient flow, defined as

dx
dt

=−∇ f (x), x(0) = x0 ∈ Rd , (1.2)

where x0 is its initialisation. It is easy to see that traversing the gradient flow always
reduces the value of f . Indeed, for any positive h, it holds that

f (x(h))− f (x0) =−
∫ h

0
‖∇ f (x(t))‖2

2 dt ≤ 0. (1.3)

By discretising the gradient flow in (1.2), we can design various optimisation algo-
rithms for (1.1). For example, by substituting in (1.2) the approximation

dx
dt

(tn)≈
x(tn +h)− x(tn)

h
, (1.4)

we obtain the gradient descent (GD) method as the iteration

xn+1 = xn−h∇ f (xn), n = 0,1,2, . . . (1.5)

Here, xn is the numerical approximation of x(tn) for all n and h > 0 is the step size [13].
For this discretisation to remain stable, that is, for xn in (1.5) to remain close to the
exact gradient flow x(tn) and, consequently, for the value of f to reduce in every
iteration, the step size h must not be too large.

Indeed, a well-known shortcoming of GD is that we must take h≤ 2/L to ensure
stability, otherwise f might increase from one iteration to the next [13]. One can
consider a different discretization of (1.2), by for example substituting in (1.2) the
approximation (1.4) at x(tn +h) instead of x(tn). We then arrive at the update

xn+1 = xn−h∇ f (xn+1), (1.6)

which is known as the implicit Euler method in numerical analysis [10] because, as the
name suggests, it involves solving (1.6) for xn+1. It is not difficult to see that, unlike
GD, there is no size restriction on the step size h for the implicit Euler method to
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decay, a property related to its algebraic stability [9]. Moreover, it is easy to verify that
xn+1 in (1.6) is also the unique minimiser of the problem

min
x∈Rd

h f (x)+
1
2
‖x− xn‖2

2; (1.7)

the map from xn to xn+1 is known in the optimisation literature as the proximal map
of the function h f [14]. Unfortunately, even if ∇ f is known explicitly, solving (1.6)
for xn+1 or equivalently computing the proximal map is often just as hard as solving
(1.1), with a few notable exceptions [14]. This setback severely limits the applicability
of the proximal algorithm in (1.6) for solving problem (1.1).
Contributions. With this motivation, we propose the Runge-Kutta Chebyshev descent
(RKCD) method for solving problem (1.1). RKCD offers the best of both worlds,
namely the computational tractability of GD (explicit Euler method) and the stability
of the proximal algorithm (implicit Euler method). Inspired by [16], RKCD uses
explicit stabilised methods [18,5,1] to discretise the gradient flow (1.2).

For the numerical integration of stiff problems, explicit stabilised methods provide
a computationally efficient alternative to the implicit Euler method for stiff differential
equations, where standard integrators face a severe step size restriction, in particular
for spatial discretisations of high-dimensional diffusion PDEs; see the review [2].
Every iteration of RKCD consists of s internal stages, where each stage performs a
simple GD-like update. Unlike GD however, RKCD does not decay monotonically
along its internal stages, which allows it to take longer steps and travel faster along
the gradient flow. After s internal stages, RKCD ensures that its new iterate is stable,
namely, the value of f indeed decreases after each iteration of RKCD.

Recently, there has been a revived interest about the design and the interpretation of
optimization methods as discretizations of ODEs [16]. In particular, discrete gradient
methods were used in [8] for the integration of (1.2) and shown to have similar
properties to the gradient descent for (strongly) convex objective functions. In addition,
the work in [24], considers numerical discretizations of a rescaled version of the
gradient flow (1.2) and shows that acceleration can be achieved when extra smoothness
assumptions are imposed to the objective function f . Furthermore, in [19,23] an
alternative second-order differential equation to the gradient flow was introduced
containing a momentum term. Similarly, to the spirit of this work, a number of
different numerical discretizations including Runge-Kutta methods were used for
the integration of this second-order equation and shown to behave in an accelerated
manner [27,17,6]. Our method, on the other hand, can achieve similar acceleration
by a direct integration of the gradient flow (1.2) and does not need to include such a
momentum term explicitly.

The rest of this paper is organised as follows. Section 2 formally introduces RKCD,
which is summarised in Algorithm 1 and accessible without reading the rest of this
paper. In Section 3, we then quantify the performance of RKCD for solving strongly
convex quadratic programs, while in Section 4 we introduce and study theoretically a
composite variant of RKCD applied to perturbations of quadratic functions. Then in
Section 5, we empirically compare RKCD to other first-order optimisation algorithms
and conclude that RKCD improves over the state of the art in practice. This paper
concludes with an overview of the remaining theoretical challenges.
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2 Explicit stabilised gradient descent

Let us start with the simple scalar problem where f (x) = 1
2 λx2, that is,

min
x∈R

1
2 λx2, λ > 0, (2.1)

and consider the corresponding gradient flow

dx
dt

=−λx, x(0) = x0 ∈ R, (2.2)

also known as the Dahlquist test equation [10]. It is obvious from (2.2) that limt→∞ x(t)=
0 and any sensible optimisation algorithm should provide iterates {xn}n with a similar
property, that is,

lim
n→∞

xn = 0. (2.3)

For GD, which corresponds to the explicit Euler disctretisation of (2.2), it easily
follows from (1.5) that

xn+1 = Rgd(z)xn, Rgd(z) = 1+ z, z =−λh, (2.4)

where Rgd is the stability polynomial of GD. Hence, (2.3) holds if z ∈Dgd , where the
stability domain Dgd of GD is defined as

Dgd = {z ∈ C ; |Rgd(z)|< 1}. (2.5)

That is, (2.3) holds if h ∈ (0,2/λ ), which imposes a severe limit on the time step
h when λ is large. Beyond this limit, namely, for larger step sizes, the iterates of
GD might not necessarily reduce the value of f or, put differently, the explicit Euler
method might no longer be a faithful discretisation of the gradient flow.

At the other extreme, for the proximal algorithm which corresponds to the implicit
Euler discretisation of the gradient flow in (2.2), it follows from (1.6) that

xn+1 = Rpa(z)xn, Rpa(z) =
1

1− z
, z =−λh, (2.6)

with the stability domain

Dpa =
{

z ∈ C ; |Rpa(z)|< 1
}
.

Therefore, (2.3) holds for any positive step size h. This property is known as A-stability
of a numerical method [10]. Unfortunately, the proximal algorithm (implicit Euler
method) is often computationally intractable, particularly in higher dimensions.

In numerical analysis, explicit stabilised methods for discretising the gradient flow
offer the best of both worlds, as they are not only explicit and thus computationally
tractable, but they also share some favourable stability properties of the implicit
method. Our main contribution in this work is adapting these methods for optimisation,
as detailed next.

For discretising the gradient flow (2.2), the key idea behind explicit stabilised
methods is to relax the requirement that every step of explicit Euler method should
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remain stable, namely, faithful to the gradient flow. This relaxation in turn allows the
explicit stabilised method to take longer steps and traverse the gradient flow faster.
To be specific, applying any given explicit Runge-Kutta method with s stages (i.e., s
evaluations of ∇ f ) per step to (2.2) yields a recursion of the form

xn+1 = Rs(z)xn, Rs(z) = 1+ z+a2z2 + . . .+aszs, (2.7)

with the corresponding stability domain Ds = {z ∈ C ; |Rs(z)|< 1}. We wish to choose
{a j}s

j=2 to maximise the step size h while ensuring that z =−hλ still remains in the
stability domain Ds, namely, for the update of the explicit stabilised method to remain
stable. More formally, we wish to solve

max
a2,··· ,as

Ls subject to |Rs(z)| ≤ 1, ∀z ∈ [−Ls,0]. (2.8)

As shown in [10] (see also [2]), the solution to (2.8) is Ls = 2s2 and, after substitut-
ing the optimal values for {a2}s

j=1 in (2.7), we find that the unique corresponding Rs(z)
is the shifted Chebyshev polynomial Rs(z) = Ts(1+ z/s2) where Ts(cosθ) = cos(sθ)
is the Chebyshev polynomial of the first kind with degree s. In Figure 2.1, Rs(z) is
depicted as η = 0 in red. It is clear from panel (b) that Rs(z) equi-oscillates between
−1 and 1 on z ∈ [−Ls,0], which is a typical property of minimax polynomials. As a
consequence, after every s internal stages, the new iterate of the explicit stabilised
method remains stable and faithful to (2.2), while travelling the most along the gradient
flow.

Numerical stability is still an issue for the explicit stabilised method outlined
above, particularly for the values of z =−λh for which |Rs(z)|= 1. As seen on the top
of Figure 2.1(a), even the slightest numerical imperfection due to round-off will land
us outside of the stability domain Ds, which might make the algorithm unstable. In
addition, for such values of z where |Rs(z)|= 1, the new iterate xn+1 is not necessarily
any closer to the minimiser, here the origin. As a solution, it is common practice
(see, e.g., [10]) to tighten the stability requirement to |Rs(z)| ≤ αs(η)< 1 for every
z ∈ [−Ls,η ,−δη ]. A popular choice is to introduce a positive dampening parameter η

so that the stability function satisfies

Rs(z) =
Ts(ω0 +ω1z)

Ts(ω0)
, ω0 = 1+

η

s2 , ω1 =
Ts(ω0)

T ′s (ω0)
. (2.9)

Now, Rs(z) oscillates between −αs(η) and αs(η) for every z ∈ [−Ls,η ,−δη ], where

αs(η) =
1

Ts(ω0)
< 1, Ls,η =

1+ω0

ω1
. (2.10)

In fact, Ls,η ' (2− 4
3 η)s2 is close to the optimal stability domain size Ls,0 = 2s2 for

small η ; see [2]. It also follows from (2.7) that

|xn+1| ≤ αs(η)|xn|,

namely, the new iterate of the explicit stabilised method is indeed closer to the min-
imiser. In addition, as we can see in Figure 2.1, introducing damping also ensures that
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(a) Complex stability domains Ds: level set of |Rs(z)| ≤ 1 for complex z.
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(b) Graph of the stability function Rs(z) as function of real z.

Fig. 2.1: Stability domains and stability functions of the Chebyshev method with
s = 10 stages and different damping values η = 0,0.05, and 2.

a strip around the negative real axis is included in the complex stability domain Ds,
which grows in the imaginary direction as the damping parameter η increases. We
also point out that, while a small damping η = 0.05 is usually sufficient for standard
stiff problems, the benefit of large damping η was first exploited in [4] in the context
of stiff stochastic differential equations and later improved in [3] using second kind
Chebyshev polynomials.

It is relatively straightforward to generalise the ideas from above to integrate
general multivariable gradient flows, thus not only the scalar test function (2.2). For
the algorithmic implementation to be numerically stable, however, one should not
evaluate the Chebyshev polynomials Ts(z) naively but instead use their well-known
three-term recurrence Tj+1(x) = 2xTj(x)−Tj−1(x), for j = 1,2, . . . (with T0(x) = 1)
in the implementation of the methods [20]. We dub this algorithm the Runge-Kutta
Chebyshev descent method (RKCD), summarised in Algorithm 1.

3 Strongly convex quadratic

Consider the problem (1.1) with

f (x) = 1
2 xT Ax−bT x, (3.1)

where A ∈ Rd×d is a positive definite and symmetric matrix, and b ∈ Rd . As the
next proposition shows, the convergence of any Runge-Kutta method (such as GD,
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Algorithm 1 Runge-Kutta Chebyshev descent method (RKCD) for solving (1.1)
Input: The gradient ∇ f of a differentiable function f : Rd → R. Damping η (e.g., η = 1.17). Lower and
upper bounds ` and L for eigenvalues of ∇2 f . Initialisation x0 ∈ Rd .

Body: Until convergence, repeat:

– Compute h and s using (3.6) and

ω0 = 1+
η

s2 , ω1 =
Ts(ω0)

T ′s (ω0)
, (2.11)

with Ts is the Chebyshev polynomial of the first kind with degree s.
– Set x0

n = xn and x1
n = x0

n−hµ1∇ f (xn) with µ1 = ω1/ω0
– For j ∈ {2, · · · ,s}, repeat:

x j
n =−µ jh∇ f (x j−1

n )+ν jx j−1
n − (ν j−1)x j−2

n ,

µ j =
2ω1Tj−1(ω0)

Tj(ω0)
, ν j =

2ω0Tj−1(ω0)

Tj(ω0)
.

– Set xn+1 = xs
n.

Output: Estimate x̂ = xn+1 of a minimiser of (1.1).

proximal algorithm) depends on the eigenvalues of A; the proof can be found in the
appendix.

Proposition 1. For solving problem (1.1) with f as in (3.1), consider an optimisation
algorithm with stability function R (for example, R = Rgd for GD in (2.4)) and step
size h. Let {xn}n≥0 be the iterates of this algorithm. Also assume that 0 < `= λ1 ≤
·· · ≤ λd = L, where {λi}i are the eigenvalues of A. Then, for every iteration n≥ 0, it
holds

f (xn+1)− f (x∗)≤ max
1≤i≤d

R2(−hλi)( f (xn)− f (x∗)) (3.2)

with x∗ the minimizer of f .

Let us next apply Proposition 1 to both GD and RKCD.

Gradient descent. Recalling (2.4), it is not difficult to verify that

max
1≤i≤d

R2
gd(−λih) =


R2

gd(−`h), if 0 < h≤ 2
`+L ,

R2
gd(−Lh), if h≥ 2

`+L .

(3.3)

It then follows from (3.3) that we must take h ∈ (0,2/L) for GD to be stable, namely,
for GD to reduce the value of f in every iteration. In addition, one obtains the best
possible decay rate by choosing h = 2/(`+L). More specifically, we have that

min
h

max
1≤i≤d

R2
gd(−λih) =

(
κ−1
κ +1

)2

,
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where κ = L/` is the condition number of the matrix A. That is, the best convergence
rate for GD is predicted by Proposition 1 as

f (xn+1)− f (x∗)≤
(

κ−1
κ +1

)2

( f (xn)− f (x∗)), (3.4)

achieved with the step size h = 2/(`+L). Remarkably, the same conclusion holds for
any function in F`,L, as discussed in [12].

Explicit stabilised gradient descent. In the case of Algorithm 1, there are three differ-
ent parameters that need to be chosen, namely, the step size h, the number of internal
stages s, and the damping factor η . For a fixed positive η , let us next select h and
s so that the numerator of Rs(z) in (2.9), namely |Ts(ω0 +ω1z)|, is bounded by one.
Equivalently, we take h,s such that

−1≤ ω0−ω1Lh≤ ω0−ω1`h≤ 1. (3.5)

For an efficient algorithm, we choose the smallest step size h and the smallest number
s of internal stages such that (3.5) holds. More specifically, (3.5) dictates that κ ≤
(1+ω0)/(−1+ω0) = 1+2s2/η ; see (2.11). This in turn determines the parameters
s and h as

s =
⌈√

(κ−1)η/2
⌉
, h =

ω0−1
ω1`

, (3.6)

with κ = L/`. Under (3.5) and using the definitions in (2.9,2.10), we find that

|Rrkcd(−λih)| ≤ αs(η)

for every 1≤ i≤ d. Then, an immediate consequence of Proposition 1 is

f (xn+1)− f (x∗)≤ αs(η)2( f (xn)− f (x∗)). (3.7)

Given that every iteration of RKCD consists of s internal stages—hence, with the same
cost as s GD steps—it is natural to define the effective convergence rate of RKCD as

crkcd(κ) = αs(η)2/s. (3.8)

The following result, proved in the appendix, evaluates the effective convergence rate
of RKCD, as given by (3.8), in the limit of η → ∞.

Proposition 2. With the choice of step size h and number s of internal stages in (3.6),
the effective convergence rate crkcd(κ) of RKCD for solving problem (1.1) with f
given in (3.1) satisfies

lim
η→∞

crkcd(κ) = copt(κ)+O(κ−3/2),

copt(κ) =

(√
κ−1√
κ +1

)2

. (3.9)
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Fig. 3.1: This figure considers the non-asymptotic scenario from Prop. 2 and plots, as a
function of the condition number κ , the difference crkcd(κ)−copt(κ) of the (effective)
convergence rate of RKCD compared to the optimal one, for many fixed values of
the damping parameter η . In this plot, we observe that crkcd(κ)− copt(κ) decays
as Cη/

√
κ for κ → ∞ and for fixed η , see the slope −1/2 in the plot. Numerical

evaluations suggest that the constant Cη = O(1/
√

η) becomes arbitrarily small as η

grows, which corroborates Proposition 2. For comparison, we also include the result
cagd(κ)− copt(κ) for the optimal rate of the Nestrov’s accelerated gradient descent
(AGD) given by cagd = (1− 2/

√
3κ +1)2 [12]. Comparing the two algorithms in

Section 5 we find that RKCD outperforms AGD, namely crkcd ≤ cagd for η ≥ η0,
where η0 ' 1.17 is a moderate size constant.

Above, copt(κ) is the optimal convergence rate of a first-order algorithm, which is
achieved by the conjugate gradient (CG) algorithm for quadratic f ; see [13]. Put
differently, Proposition 2 states that RKCD nearly achieves the optimal convergence
rate in the limit of η→∞1. Moreover, it is perhaps remarkable that the performance of
RKCD relative to the conjugate gradient improves as the condition number of f wors-
ens, namely, as κ increases. The non-asymptotic behaviour of RKCD is numerically
investigated in Figure 3.1, corroborating Proposition 2. As illustrated in Section 5,
Algorithm 1 can also be used effectively for optimization problems with non-quadratic
f ∈F`,L.2

4 Perturbation of a quadratic objective function

Proposition 2 shows us that, for strongly convex quadratic problems, one can recover
the optimal convergence rate of the conjugate gradient for large values of the damping
parameter η . Here we discuss a modification of Algorithm 1 to a specific class of
nonlinear problems for which we can prove the same convergence rate as in the
quadratic case. More precisely, we consider

f (x) = 1
2 xT Ax+g(x), (4.1)

where A is a positive definite matrix for which we know (bounds on) the smallest and
largest eigenvalue, and g is a β -smooth convex function [13]. Inspired by [26], we

1 In practice, as η becomes larger the number of stages s grows; see (3.6). Therefore, the largest possible
η is dictated by the computational budget in terms of gradient evaluations.

2 We remark that the parameters h and s should then also be chosen using (3.6), where κ = L/`.
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consider the modification3 of Algorithm 1 specifically designed for the minimization
of composite functions of the form (4.1). We call this method the partitioned Runge-
Kutta Chebyshev descent method (PRKCD) and show in Proposition 3 (proved in the
appendix) that it matches the rate given by the analysis of quadratic problems. PRKCD
is derived as a variant of the RKCD method applied to the target function (4.1), where
the nonquadratic term is replaced by the linearization g(x)' g(xn)+(x−xn)

T ∇g(xn),
as described in Algorithm 2. In practice, PRKCD is implemented almost identically
to the RKCD method, except that the gradient terms ∇g in ∇ f (x) = Ax+∇g(x) are
evaluated at xn in all the intermediate steps j = 1, . . . ,s described in Algorithm 1.
Hence, PRKCD is a numerically stable implementation of the update

xn+1 = Rs(−Ah)xn−Bs(−Ah)∇g(xn), (4.2)

Bs(z) =
1−Rs(z)

z
,

where Rs(z) is the stability function given by (2.9). It is worth noting that this method
has only one evaluation of ∇g per step of the algorithm, which can be advantageous if
the evaluations of ∇g are costly.

Algorithm 2 Partitioned Runge-Kutta Chebyshev descent method (PRKCD) for mini-
mizing (4.1)
Input: The gradient ∇g of a differentiable function g : Rd →R, and the matrix A ∈Rd×d . Damping η (e.g.,
η = 1.17). Lower and upper bounds ` and L for eigenvalues of A. Initialisation x0 ∈ Rd .

Apply Algorithm 1 to the function

f (x) = 1
2 xT Ax+g(xn)+(x− xn)

T
∇g(xn), (4.3)

with gradient ∇ f (x) = Ax+∇g(xn).

Proposition 3. Let f be given by (4.1) where A ∈ Rd×d is a positive definite matrix
with largest and smallest eigenvalues L and ` > 0, respectively, and condition number
κ = L/`. Let γ > 0 and g be a β -smooth convex function for which 0 < β <C(η)γ`
where C(η) =ω1αs(η)/(ω0−1) and the parameters of PRKCD are chosen according
to conditions (3.6). Then the iterates of PRKCD satisfy

f (xn+1)− f (x∗)≤ (1+ γ)2
α

2
s (η)( f (xn)− f (x∗)) (4.4)

with x∗ the minimizer of f .

Roughly speaking, Proposition 3 states that the effective convergence rate of PRKCD
matches that of RKCD in (3.7) up to a factor of (1+ γ)2, as long as

(1+ γ)αs(η)< 1 (4.5)

3 In the case where g(x) = 0 this algorithm coincides with Algorithm 1 for ∇ f (x) = Ax.
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to guarantee the convergence of Algorithm 2. Since lims→∞(1+γ)2/s = 1, the effective
rate in (4.4) is equivalent to crkcd(κ) in the limit of a large condition number κ . Indeed,
the numerical evidence in Figure 3.1 suggests that PRKCD remains efficient for
moderate values of the damping parameter η . In particular, for η =η0 = 1.17, we
have that crkcd ' cagd = (1− 2/

√
3κ +1)2 and C(η0) ' 0.59 when κ � 1. Using

(3.6),(3.8) yields that αs(η0) is close to limκ→∞ cs/2
agd ' 0.413, and the convergence

condition (4.5) holds for γ < 1/αs(η0)− 1 and β/` < C(η0)γ ' 0.83 for κ � 1,
where β is the smoothness parameter of g and ` the smallest eigenvalue of A.

Remark 4.1 For the case of a stiff objective function g1 perturbed by a nonstiff and
possibly costly nonquadratic function g2, the PRKCD method can be generalized as
follows to minimize the function

f (x) = g1(x)+g2(x). (4.6)

Similar to Algorithm 2, one can simply apply Algorithm 1 to the modified objective
function where g2(x) is replaced by g2(xn)+ (x− xn)

T ∇g2(xn) in (4.6). Note that
the corresponding method coincides with Algorithm 2 in the case of a quadratic
function g1(x) = 1

2 xT Ax perturbed by g2(x) = g(x).

5 Numerical examples

In this section we illustrate the performance of of RKCD (Algorithm 1) and PRKCD
(Algorithm 2) for solving problem (1.1) for a number of different test problems. In all
the test problems, we will compare our method with optimally-tuned gradient descent
(GD), given by

xk+1 = xk−
2

`+L
∇ f (xk),

as well as the accelerated gradient descent (AGD), given in [13] as

xk+1 = yk−
1
L

∇ f (yk),

yk+1 = xk+1 +

√
L−
√
`√

L+
√
`
(xk+1− xk).

Two of our examples are for quadratic stiff problems, either pure or perturbed by
a non-stiff term, while the other test problems are for stiff non-quadratic problems.
This is only to verify the theoretical analyses of Propositions 1–3. We do not advocate
RKCD and PRKCD for such problems since exponential integrators with (rational)
Krylov subspace techniques might be more appropriate then; see, e.g., [11,7]. However,
the experiments below will show that our methods also perform well for minimizing
non-quadratic strongly convex functions, which our theoretical results do not cover.
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Strongly convex quadratic programming: We consider the quadratic function f (x) =
1
2 xT Ax− xT b, with A ∈ Rn×n a random matrix drawn from the Wishart distribution,
namely, A ∼ 1

mWn(In,m) with n = 4800,m = 5000, and the entries of b ∈ Rn are
independently drawn from the standard Gaussian distribution N (0,1). For this matrix,
with high probability, we have the following estimates from [22] for its largest and
smallest eigenvalues

L =

(
1+
√

n
m

)2

, `=

(
1−
√

n
m

)2

giving κ ≈ 104. Since this problem is quadratic we will also solve it using the conjugate
gradient method (CG).

We plot f (xk)− f (x∗) for the RKCD, GD, AGD and CG in Figure 5.1. As predicted
by Proposition 2, as the damping parameter η for RKCD increases, the behaviour of
RKCD approaches that of CG. Furthermore, even for the modest damping parameter
of η ≈ 1.17, RKCD is comparable to AGD.

Regularised logistic regression: We now study our first example not covered by our
theoretical results. Consider the objective function

f (x) =
m

∑
i=1

log(1+ exp(−yiξ
T
i x))+ τ

2‖x‖
2
2,

where Ξ =
[
ξ1 · · · ξm

]T ∈ Rm×d is the design matrix with the columns {ξi}i, and
y ∈ {−1,1}d . Note that f ∈F`,L with `= τ and L = τ +‖Ξ‖2

2/4. As in [15], we used
the Madelon UCI dataset with d = 500, m = 2000, and τ = 102. This results in a very
poorly conditioned problem with κ = L/l ≈ 109.

We plot f (xk)− f (x∗) for the RKCD, GD, and AGD in Figure 5.2. We again
observe that, as the damping parameter increases, the convergence rate of RKCD
improves, thus requiring half of the number of evaluations needed for the RKCD to
achieve the same level of accuracy of 10−5, compared to AGD. Furthermore, for this
problem, RKCD is comparable to AGD even for the modest damping parameter of
η ≈ 1.17.

Regression with (smoothed) elastic net regularisation: We now study a regression
problem with (smoothed) elastic net regularisation. In particular, in the case the
objective function is of the form f (x) = 1

2‖Ax− b‖2
2 + λLτ(‖x‖1)+

`
2‖x‖

2
2, where

Lτ(t) is the standard Huber loss function with parameter τ to smooth |t|; see [28].
We used A ∈ Rm×d a random matrix drawn from the Gaussian distribution scaled by
1/
√

d, d = 3000, m = 900, λ = 0.2, τ = 10−3, l = 10−2. The objective function is in
F`,L with L≈ (1+

√
m/d)2 +λ/τ + `. The condition number is κ ≈ 104.

We plot f (xk)− f (x∗) for the RKCD, GD, and AGD in Figure 5.3. The behaviour
of all the different methods is very similar to the one for the regularised logistic
regression.
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Fig. 5.1: Error in function value f (xk)− f (x∗) for the strongly convex quadratic
programming problem.

Nonlinear elliptic PDE: We consider the one-dimensional integro-differential PDE

∂

∂x

(
exp
(
−αu(x)

)∂u(x)
∂x

)
=
∫ 1

0

u4(s)
(1+ |x− s|)2 dx, u(0) = 1, u(1) = 0 (5.1)

on the interval 0≤ x≤ 1, where α is a fixed parameter. We first consider the semilinear
case α = 0, where the left-hand side of (5.1) reduces to the Laplacian ∂ 2u(x)

∂x2 , which
yields a model describing the stationary variant of a temperature profile of air near the
ground [21]. Using a finite difference approximation u(i∆x)'Ui for i = 1, . . .d on a
spatial mesh with size ∆x = 1/(d +1), and using the trapezoidal quadrature for the
integral, we obtain a problem of the form (4.1) where A is the usual tridiagonal discrete
Laplace matrix of size d×d with condition number κ ' 4π−2d2 (using λmax ∼ 4∆x−2

and λmin → π2 as ∆x→ 0), and the entries of the gradient vector ∇g(U) ∈ Rd are
given by

∂g(U)

∂Ui
=

∆x
2(1+ i∆x)2 +

d

∑
j=1

∆xU4
j

(1+∆x|i− j|)2 .

We observe that, when the dimension d is large, calculating ∇g(x) can become very
expensive as one needs to calculate a sum over all j’s, which makes PRKCD a
particularly attractive option here. We plot f (xk)− f (x∗) for the RKCD, PRKCD and
GD in Figure 5.4 for d = 200. We use the initialization corresponding to the simple
function u(x) = 1− x which satisfies the boundary conditions in (5.1).

In the semilinear case (α = 0), we see in Figure 5.4 (left) that the PRKCD performs
similarly to RKCD for the sets of parameters η = 10,s = 288 and η = 1.17,s = 99,
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Fig. 5.2: Error in function value f (xk)− f (x∗) for the regularised logistic regresion
problem.

where s denotes the number of evaluations per step of ∇ f (x) = Ax+∇g(x) for RKCD,
and respectively the number of matrix-vector products Ax j−1

n for PRKCD (recall that
PRKCD needs a single evaluation of the gradient ∇g per step), which corroborates
Proposition 3. For the case of a nonlinear diffusion (with α = 1 in (5.1)), we consider
the natural generalization of the PRKCD method described in Remark 4.1. For the
discrete nonlinear diffusion term evaluated at point xi = i∆ t, we use the natural finite
difference formula

∂

∂x

(
exp
(
−αu(xi)

)∂u(xi)

∂x

)
' e−αUi

Ui+1−Ui

∆x2 − e−αUi−1
Ui−Ui−1

∆x2 ,

and consider in the algorithms the bounds `= π2e−α and L = 4∆x−2 for the spectrum
of ∇2 f (x). In Figure 5.4 (right) we observe again excellent performances of the
RKCD and PRKCD methods, although such a nonquadratic problem associated to the
nonlinear PDE (5.1) is not covered by Proposition 3.

Smoothed total variation denoising: Here we consider the problem of image denoising
using a smoothed total variation regularisation. In particular the objective function is
of the form

f (x) =
1
2
||x− y||2 +λJε(x)

where y is the noisy image4 and Jε(x) is is a smoothed total variation of the image.

4 The original image and the noisy version can be seen in Figure 5.5.
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Fig. 5.3: Error in function value f (xk)− f (x∗) for the regression with (smoothed)
elastic net regularisation.
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Fig. 5.4: Error in function value f (xk)− f (x∗) for the nonlinear PDE problem (5.1).

In particular,
Jε(x) = ∑

i
||(Gx)i||ε

where (Gx)i ∈ R2 is an approximation of the gradient of x at pixel i and for u ∈ R2

and
||u||ε =

√
ε2 + ||u||2

a smoothing of the L2 norm in R2.
The objective function is in F`,L with ` = 2 and L = 2

(
1+ 4λ

ε

)
. We choose

λ = 6 ·10−2,ε = 10−4 and hence the conditioning number is κ ≈ 2.4×104. We plot
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(a) Original image (b) Noisy image

Fig. 5.5: Images used for the smoothed total variation denoising.

f (xk)− f (x∗) for the RKCD, GD and AGD in Figure 5.6a as well as the denoised
image in Figure 5.6b.
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100

105

f(
x k

) 
- 

f(
x *)

Image denoising

RKCD
RKCD

(a) Error in function values. (b) Denoised image

Fig. 5.6: Total variation image denoising example.

6 Conclusion

In this paper, using ideas from numerical analysis of ODEs, we introduced a new class
of optimisation algorithms for strongly convex functions based on explicit stabilised
methods. With some care, these new methods RKCD and PRKCD are as easy to
implement as SD but require in addition a lower bound ` on the smallest eigenvalue.
They were shown to match the optimal convergence rates of first order methods for
certain subclasses of F`,L.



Explicit Stabilised Gradient Descent for Faster Strongly Convex Optimisation 17

Our numerical experiments illustrate that this might be the case for all functions in
F`,L, and proving this is the subject of our current research efforts. In addition, there is
a number of different interesting research avenues for this class of methods, including
adjusting them to convex optimisation problems with `= 0, as well as for adaptively
choosing the time-step h using local information to optimise their performance further.
Furthermore, their adaptation to stochastic optimisation problems, where one replaces
the full gradient of the function f by a noisy but cheaper version of it, is another
interesting but challenging direction we aim to investigate further.
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A Proof of the main results

In this section we will discuss the proofs of the main results in the paper

Proof of Proposition 1. We start our proof by noticing that the gradient flow (1.2) in the case of the
quadratic function (3.1) becomes

dx
dt

=−Ax+b.

In addition since A is positive definite and symmetric, there exists an orthogonal matrix V such that

A =V DV−1, D = diag(λ1, · · · ,λd), λ1 ≤ ·· · ≤ λd .

If we now make the change of variables y =V−1x−D−1V−1b, we obtain the following equation

dy
dt

=−Dy. (A.1)

Hence, in this coordinate system each coordinate is independent of the other, while the objective function
can be written as

f (y)− f (y(∗)) =
1
2

d

∑
i=1

λiy2
i , y(∗) = 0.

We can now write equation (A.1) in the vector form as

dyi

dt
=−λiyi,

and hence each coordinate satisfies independently the simple quadratic (3.1) and the application of Runge–
Kutta method with stability function R(z) gives y(n+1) = R(−hλi)y(n) (where y(n) is the nth iterate, that is,
y(n) =V−1xn). Hence

f (y(n+1))− f (y(∗)) =
d

∑
i=1

λi

[
R(−hλi)y

(n)
i

]2

≤ max
1≤i≤d

R2(−hλi)( f (y(n))− f (y(∗))),

which completes the proof.
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Proof of Proposition 2. Using (2.10) and properties of Chebyshev polynomials we have

αs(η) =
[
cosh

(
sarcosh

(
1+

η

s2

))]−1
.

Using (3.6) and the estimate cosh(sx)−2/s→ e−2x for s→ ∞, we deduce

lim
η→∞

crkcd(κ) = e−2arcosh(1+ 2
κ )

=

(√
κ−1√
κ +1

)2

+O(κ−3/2).

Proof of Proposition 3. Our starting point is equation (4.2). In particular, we will show that if we choose
our parameters suitably, then this scheme converges with the rate predicted by the theorem, and we will
then show how Algorithm 2 corresponds to an implementation of this scheme.

We start the proof by noting that since f in (4.1) is strongly convex there exists a unique minimizer x∗
satisfying

Ax∗+∇g(x∗) = 0. (A.2)

Thus

xn+1− x∗ = Rs(−Ah)xn−hBs(−Ah)∇g(xn)− x∗
= Rs(−Ah)(xn− x∗)

−hBs(−Ah)(∇g(xn)−∇g(x∗))

+(Rs(−Ah)− I +hBs(−Ah)A)x∗

where in the above identity we have used (A.2) multiplied on the left by Bs(−Ah). Now, by definition of
the matrix B we have Rs(−Ah)− I +hBs(−Ah)A = 0, and we obtain

xn+1− x∗ = Rs(−Ah)(xn− x∗)

−hBs(−Ah)(∇g(xn)−∇g(x∗))

and hence
||xn+1− x∗|| ≤ (||Rs(−Ah)||+h||Bs(−Ah)||β ) ||xn− x∗||.

We now know from the analysis in the main text that if h,s are chosen according to (3.6), then

||R(−Ah)|| ≤ αs(η)

and using the fact that ||Bs(−Ah)|| ≤ 1, which is a consequence of Lemma A.1 below, we see that

||xn+1− x∗|| ≤
[

αs(η)+β

(
ω0−1

ω1`

)]
||xn− x∗||

and hence
||xn+1− x∗|| ≤ (1+ γ)αs(η)||xn− x∗||

for
0 < β < β∗ = γµC(η)

where we define

C(η) =
ω1αs(η)

ω0−1
.

We have thus proved Proposition 3 for a numerical scheme of the form (4.2). It remains to prove that
Algorithm 2 is a scheme equivalent to (4.2). Indeed, the following identity can be proved by induction on
j = 2, . . . ,s, using Tj(x) = 2xTj−1(x)−Tj−2(x),

x j
n = Rs, j(−hA)xn−Bs, j(−hA)∇g(xn)

where Rs, j(x) = Tj(ω0 +ω1x)/Tj(ω0), Bs, j(x) = (I−Rs, j(x))/x, and we obtain the result (4.2) by taking
j = s.
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Lemma A.1 Consider the polynomial B(ξ ) defined in (4.2). Then, maxξ∈[−Ls,η ,0] |B(ξ )|= 1.

Proof. By the Lagrange theorem, for ξ in the interval (−Ls,η ,0), there exists z in the same interval such
that −B(ξ ) = (Rs(z)−1)/z = R′s(z), and using the definition of Rs(z) in (2.9), we have for x = ω0 +ω1z,

R′s(z) =
T ′s (x)

T ′s (ω0)
.

Recalling x ∈ [−1,ω0], for the first case where x ∈ [1,ω0], we use the fact that Ts(x) and all its derivatives
are increasing functions of x ≥ 1 (this is because by the Rolle theorem all the roots of the Chebyshev
polynomials Ts(x) and their derivatives are in the interval [−1,1]). Hence |T ′s (x)| ≤ |T ′s (ω0)|, which yields
|R′s(z)| ≤ 1. For the second case where x ∈ [−1,1], we have x = cos(θ) for some θ , and we obtain

s−2|T ′s (x)|= s−2|T ′s (cos(θ))|= |sin(sθ)|
s|sinθ |

≤ 1,

where the latter bound can be obtain by an elementary study of the function sin(sθ)/(ssinθ), while
s−2T ′s (ω0)≥ s−2T ′s (1) = 1 is an increasing function of η , hence |R′s(z)| ≤ 1, and this concludes the proof
of Lemma A.1.
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