68 research outputs found

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres

    Bartonella Clarridgeiae Bacteremia Detected In An Asymptomatic Blood Donor

    Get PDF
    Human exposure to Bartonella clarridgeiae has been reported only on the basis of antibody detection. We report for the first time an asymptomatic human blood donor infected with B. clarridgeiae, as documented by enrichment blood culture, PCR, and DNA sequencing.531352356Maggi, R.G., Duncan, A.W., Breitschwerdt, E.B., Novel chemically modified liquid medium that will support the growth of seven Bartonella species (2005) J Clin Microbiol, 43, pp. 2651-2655. , http://dx.doi.org/10.1128/JCM.43.6.2651-2655.2005Drummond, M.R., Pitassi, L.H., Lania, B.G., Dos Santos, S.R., Gilioli, R., Velho, P.E., Detection of Bartonella henselae in defibrinated sheep blood used for culture media supplementation (2011) Braz J Microbiol, 42, pp. 430-432. , http://dx.doi.org/10.1590/S1517-83822011000200003Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Dalton, M.J., Robinson, L.E., Cooper, J., Regnery, R.L., Olson, J.G., Childs, J.E., Use of Bartonella antigens for serologic diagnosis of cat-scratch disease at a national referral center (1995) Arch Intern Med, 155, pp. 1670-1676Breitschwerdt, E.B., Maggi, R.G., Chomel, B.B., Lappin, M.R., Bartonellosis: An emerging infectious disease of zoonotic importance to animals and human beings (2010) J Vet Emerg Crit Care (San Antonio), 20, pp. 8-30. , http://dx.doi.org/10.1111/j.1476-4431.2009.00496.xChamberlin, J., Laughlin, L.W., Romero, S., Solorzano, N., Gordon, S., Andre, R.G., Pachas, P., Watts, D., Epidemiology of endemic Bartonella bacilliformis: A prospective cohort study in a Peruvian mountain valley community (2002) J Infect Dis, 186, pp. 983-990. , http://dx.doi.org/10.1086/344054Maggi, R.G., Ericson, M., Mascarelli, P.E., Bradley, J.M., Breitschwerdt, E.B., Bartonella henselae bacteremia in a mother and son potentially associated with tick exposure (2013) Parasit Vectors, 6, p. 101. , http://dx.doi.org/10.1186/1756-3305-6-101Scott, M.A., McCurley, T.L., Vnencak-Jones, C.L., Hager, C., McCoy, J.A., Anderson, B., Collins, R.D., Edwards, K.M., Cat scratch disease: Detection of Bartonella henselae DNA in archival biopsies from patients with clinically, serologically, and histologically defined disease (1996) Am J Pathol, 149, pp. 2161-2167Slater, L.N., Welch, D.F., Min, K.W., Rochalimaea henselae causes bacillary angiomatosis and peliosis hepatis (1992) Arch Intern Med, 152, pp. 602-606Sander, A., Zagrosek, A., Bredt, W., Schiltz, E., Piemont, Y., Lanz, C., Dehio, C., Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy (2000) J Clin Microbiol, 38, pp. 2943-2948Kordick, D.L., Hilyard, E.J., Hadfield, T.L., Wilson, K.H., Steigerwalt, A.G., Brenner, D.J., Breitschwerdt, E.B., Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease) (1997) J Clin Microbiol, 35, pp. 1813-1818Margileth, A.M., Baehren, D.F., Chest-wall abscess due to cat-scratch disease (CSD) in an adult with antibodies to Bartonella clarridgeiae: Case report and review of the thoracopulmonary manifestations of CSD (1998) Clin Infect Dis, 27, pp. 353-357. , http://dx.doi.org/10.1086/514671Chomel, B.B., Mac Donald, K.A., Kasten, R.W., Chang, C.C., Wey, A.C., Foley, J.E., Thomas, W.P., Kittleson, M.D., Aortic valve endocarditis in a dog due to Bartonella clarridgeiae (2001) J Clin Microbiol, 39, pp. 3548-3554. , http://dx.doi.org/10.1128/JCM.39.10.3548-3554.2001Gillespie, T.N., Washabau, R.J., Goldschmidt, M.H., Cullen, J.M., Rogala, A.R., Breitschwerdt, E.B., Detection of Bartonella henselae and Bartonella clarridgeiae DNA in hepatic specimens from two dogs with hepatic disease (2003) J Am Vet Med Assoc, 222, pp. 47-51. , http://dx.doi.org/10.2460/javma.2003.222.47, 35Robinson, M.T., Hillman, T., Langton, D.A., Shaw, S.E., Bartonella clarridgeiae in a cat in the UK (2009) Vet Rec, 164, pp. 58-59. , http://dx.doi.org/10.1136/vr.164.2.58Sykes, J.E., Westropp, J.L., Kasten, R.W., Chomel, B.B., Association between Bartonella species infection and disease in pet cats as determined using serology and culture (2010) J Feline Med Surg, 12, pp. 631-636. , http://dx.doi.org/10.1016/j.jfms.2010.04.003Fouch, B., Coventry, S., A case of fatal disseminated Bartonella henselae infection (cat-scratch disease) with encephalitis (2007) Arch Pathol Lab Med, 131, pp. 1591-1594Boudebouch, N., Sarih, M., Beaucournu, J.C., Amarouch, H., Hassar, M., Raoult, D., Parola, P., Bartonella clarridgeiae, B. Henselae, and Rickettsia felis in fleas from Morocco (2011) Ann Trop Med Parasitol, 105, pp. 493-498. , http://dx.doi.org/10.1179/1364859411Y.0000000038Kordick, D.L., Brown, T.T., Shin, K., Breitschwerdt, E.B., Clinical and pathologic evaluation of chronic Bartonella henselae or Bartonella clarridgeiae infection in cats (1999) J Clin Microbiol, 37, pp. 1536-1547Chomel, B.B., Carlos, E.T., Kasten, R.W., Yamamoto, K., Chang, C.C., Carlos, R.S., Abenes, M.V., Pajares, C.M., Bartonella henselae and Bartonella clarridgeiae infection in domestic cats from the Philippines (1999) Am J Trop Med Hyg, 60, pp. 593-597Dehio, C., Bartonella interactions with endothelial cells and erythrocytes (2001) Trends Microbiol, 9, pp. 279-285. , http://dx.doi.org/10.1016/S0966-842X(01)02047-9Dehio, C., Meyer, M., Berger, J., Schwarz, H., Lanz, C., Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome (1997) J Cell Sci, 110 (18), pp. 2141-2154Braga Mdo, S., Diniz, P.P., André, M.R., Bortoli, C.P., Machado, R.Z., Molecular characterisation of Bartonella species in cats from São Luís, state of Maranhão, North-Eastern Brazil (2012) Mem Inst Oswaldo Cruz, 107, pp. 772-777. , http://dx.doi.org/10.1590/S0074-02762012000600011Eremeeva, M.E., Gerns, H.L., Lydy, S.L., Goo, J.S., Ryan, E.T., Mathew, S.S., Ferraro, M.J., Koehler, J.E., Bacteremia, fever, and splenomegaly caused by a newly recognized Bartonella species (2007) N Engl J Med, 356, pp. 2381-2387. , http://dx.doi.org/10.1056/NEJMoa065987Chomel, B.B., Boulouis, H.J., Breitschwerdt, E.B., Kasten, R.W., Vayssier-Taussat, M., Birtles, R.J., Koehler, J.E., Dehio, C., Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors (2009) Vet Res, 40, p. 29. , http://dx.doi.org/10.1051/vetres/2009011Breitschwerdt, E.B., Maggi, R.G., Duncan, A.W., Nicholson, W.L., Hegarty, B.C., Woods, C.W., Bartonella species in blood of immunocompetent persons with animal and arthropod contact (2007) Emerg Infect Dis, 13, pp. 938-941. , http://dx.doi.org/10.3201/eid1306.061337Carson, J.L., Grossman, B.J., Kleinman, S., Tinmouth, A.T., Marques, M.B., Fung, M.K., Holcomb, J.B., Djulbegovic, B., Red blood cell transfusion: A clinical practice guideline from the AABB (2012) Ann Intern Med, 157, pp. 49-58. , http://dx.doi.org/10.7326/0003-4819-157-1-201206190-00429Ramirez-Arcos, S., Goldman, M., Blajchman, M., Bacterial contamination (2012) Transfusion Reaction, 4, pp. 153-189. , Popovsky MA (ed), American Association Of Blood Banks, Bethesda, MDVamvakas, E.C., Blajchman, M.A., Transfusion-related mortality: The ongoing risks of allogeneic blood transfusion and the available strategies for their prevention (2009) Blood, 113, pp. 3406-3417. , http://dx.doi.org/10.1182/blood-2008-10-167643Magalhães, R.F., Cintra, M.L., Barjas-Castro, M.L., Del Negro, G.M., Okay, T.S., Velho, P.E., Blood donor infected with Bartonella henselae (2010) Transfus Med, 20, pp. 280-282. , http://dx.doi.org/10.1111/j.1365-3148.2010.01001.xMagalhães, R.F., Pitassi, L.H., Salvadego, M., De Moraes, A.M., Barjas-Castro, M.L., Velho, P.E., Bartonella henselae survives after the storage period of red blood cell units: Is it transmissible by transfusion? (2008) Transfus Med, 18, pp. 287-291. , http://dx.doi.org/10.1111/j.1365-3148.2008.00871.xLin, J.W., Chen, C.M., Chang, C.C., Unknown fever and back pain caused by Bartonella henselae in a veterinarian after a needle puncture: A case report and literature review (2011) Vector Borne Zoonotic Dis, 11, pp. 589-591. , http://dx.doi.org/10.1089/vbz.2009.0217Oliveira, A.M., Maggi, R.G., Woods, C.W., Breitschwerdt, E.B., Suspected needle stick transmission of Bartonella vinsonii subspecies berkhoffii to a veterinarian (2010) J Vet Intern Med, 24, pp. 1229-1232. , http://dx.doi.org/10.1111/j.1939-1676.2010.0563.xOhl, M.E., Spach, D.H., Bartonella quintana and urban trench fever (2000) Clin Infect Dis, 31, pp. 131-135. , http://dx.doi.org/10.1086/313890Daly, J.S., Worthington, M.G., Brenner, D.J., Moss, C.W., Hollis, D.G., Weyant, R.S., Steigerwalt, A.G., O'Connor, S.P., Rochalimaea elizabethae sp. Nov. Isolated from a patient with endocarditis (1993) J Clin Microbiol, 31, pp. 872-881Oksi, J., Rantala, S., Kilpinen, S., Silvennoinen, R., Vornanen, M., Veikkolainen, V., Eerola, E., Pulliainen, A.T., Cat scratch disease caused by Bartonella grahamii in an immunocompromised patient (2013) J Clin Microbiol, 51, pp. 2781-2784. , http://dx.doi.org/10.1128/JCM.00910-13Breitschwerdt, E.B., Mascarelli, P.E., Schweickert, L.A., Maggi, R.G., Hegarty, B.C., Bradley, J.M., Woods, C.W., Hallucinations, sensory neuropathy, and peripheral visual deficits in a young woman infected with Bartonella koehlerae (2011) J Clin Microbiol, 49, pp. 3415-3417. , http://dx.doi.org/10.1128/JCM.00833-11Raoult, D., Roblot, F., Rolain, J.M., Besnier, J.M., Loulergue, J., Bastides, F., Choutet, P., First isolation of Bartonella alsatica from a valve of a patient with endocarditis (2006) J Clin Microbiol, 44, pp. 278-279. , http://dx.doi.org/10.1128/JCM.44.1.278-279.2006Welch, D.F., Carroll, K.C., Hofmeister, E.K., Persing, D.H., Robison, D.A., Steigerwalt, A.G., Brenner, D.J., Isolation of a new subspecies, Bartonella vinsonii subsp. Arupensis, from a cattle rancher: Identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice (1999) J Clin Microbiol, 37, pp. 2598-2601Probert, W., Louie, J.K., Tucker, J.R., Longoria, R., Hogue, R., Moler, S., Graves, M., Fritz, C.L., Meningitis due to a "Bartonella washoensis"-like human pathogen (2009) J Clin Microbiol, 47, pp. 2332-2335. , http://dx.doi.org/10.1128/JCM.00511-09Kosoy, M., Morway, C., Sheff, K.W., Bai, Y., Colborn, J., Chalcraft, L., Dowell, S.F., Petersen, L.R., Bartonella tamiae sp. Nov., a newly recognized pathogen isolated from three human patients from Thailand (2008) J Clin Microbiol, 46, pp. 772-775. , http://dx.doi.org/10.1128/JCM.02120-07Maggi, R.G., Kosoy, M., Mintzer, M., Breitschwerdt, E.B., Isolation of Candidatus Bartonella melophagi from human blood (2009) Emerg Infect Dis, 15, pp. 66-68. , http://dx.doi.org/10.3201/eid1501.081080Lin, E.Y., Tsigrelis, C., Baddour, L.M., Lepidi, H., Rolain, J.M., Patel, R., Raoult, D., Candidatus Bartonella mayotimonensis and endocarditis (2010) Emerg Infect Dis, 16, pp. 500-503. , http://dx.doi.org/10.3201/eid1603.081673Breitschwerdt, E.B., Maggi, R.G., Cadenas, M.B., De Paiva Diniz, P.P., A groundhog, a novel Bartonella sequence, and my father's death (2009) Emerg Infect Dis, 15, pp. 2080-2086. , http://dx.doi.org/10.3201/eid1512.AD151

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Postoperative complications after procedure for prolapsed hemorrhoids (PPH) and stapled transanal rectal resection (STARR) procedures

    Get PDF
    Procedure for prolapsing hemorrhoids (PPH) and stapled transanal rectal resection for obstructed defecation (STARR) carry low postoperative pain, but may be followed by unusual and severe postoperative complications. This review deals with the pathogenesis, prevention and treatment of adverse events that may occasionally be life threatening. PPH and STARR carry the expected morbidity following anorectal surgery, such as bleeding, strictures and fecal incontinence. Complications that are particular to these stapled procedures are rectovaginal fistula, chronic proctalgia, total rectal obliteration, rectal wall hematoma and perforation with pelvic sepsis often requiring a diverting stoma. A higher complication rate and worse results are expected after PPH for fourth-degree piles. Enterocele and anismus are contraindications to PPH and STARR and both operations should be used with caution in patients with weak sphincters. In conclusion, complications after PPH and STARR are not infrequent and may be difficult to manage. However, if performed in selected cases by skilled specialists aware of the risks and associated diseases, some complications may be prevented

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers

    Get PDF
    We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs). Eleven SCNAs and 11 SMGs had not been identified in previous TCGA studies of the individual tumor types. We found functionally significant estrogen receptor-regulated long non-coding RNAs (lncRNAs) and gene/lncRNA interaction networks. Pathway analysis identified subtypes with high leukocyte infiltration, raising potential implications for immunotherapy. Using 16 key molecular features, we identified five prognostic subtypes and developed a decision tree that classified patients into the subtypes based on just six features that are assessable in clinical laboratories. By performing molecular analyses of 2,579 TCGA gynecological (OV, UCEC, CESC, and UCS) and breast tumors, Berger et al. identify five prognostic subtypes using 16 key molecular features and propose a decision tree based on six clinically assessable features that classifies patients into the subtypes
    corecore