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Abstract. We present correlation-polarization potentials for the calculation of scattering cross sections
of positrons with atoms and molecules. The potentials are constructed from a short-range correlation
term and a long-range polarization term. For the short-range correlation term we present four different
potentials that are derived from multi-component density functionals. For the long-range polarization
term we employ a multi-term expansion. Quantum scattering calculations are presented for low energy
collisions of positrons with two atomic targets (argon and krypton) and two molecular targets (nitrogen
and methane). For collision energies below the threshold for Positronium formation our calculations of
scattering cross sections are in good agreement with recent data sets from experiments and theory.

1 Introduction

The understanding of positron scattering with atomic and
molecular gases is important for the development of effi-
cient positron cooling and trapping techniques [1]. Over
the past ten years the experimental and calculated scat-
tering cross sections for low-energy collisions of positrons
with rare gas atoms, like argon and krypton, have con-
verged within the experimental uncertainties [2–10]. For
positron collisions with (polar and non-polar) molecules
the situation is less favourable. The scattering from polar
molecules with large dipole moments gives cross section
with large peaks in forward direction. In measurements
it is difficult to distinguish the unscattered particles
from those scattered into a small cone in forward di-
rection, which leads to the angular discrimination er-
ror [11–13]. Calculations for polar targets are difficult
due to the slow convergence of the partial wave expan-
sion. We reached good agreement between experiments
and theory for targets such as water [14], pyrimidine [15]
and tetrahydrofurane [16], after correcting the measure-
ments for the angular discrimination error and the cal-
culations by employing the Born approximation [17]. For
non-polar molecules the angular discrimination is much
smaller [3,18]. However, experimental cross sections for
positron-molecule collisions are still rare, and show a much
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larger spreading between different data sets. This is partly
due to the weak positron beams used in older experi-
ments. Calculations of the cross sections for positron col-
lisions with non-polar molecules are considered more dif-
ficult than for atoms, because of the more complicated
structure of the target. Even for small molecules, like hy-
drogen (H2), there is still some disagreement between dif-
ferent theories and experiments (see for example Fedus
et al. [19] for a comparison of the recent literature).
Purely ab initio methods, like the multi-channel Schwinger
method [20] and the R-matrix method [21], suffer from the
difficulty in describing the correlation and long-range po-
larization interactions correctly. However, the accuracy of
the R-matrix method can be improved systematically by
using an additional pseudo-state basis set [22].

In this paper we present four correlation potentials to
describe the short-range interations between a positron
and the electrons of an isolated atom or molecule. The
potentials are local and energy-independent. This makes
them very useful for quantum scattering calculations and
easy to implement into existing computer programs. For
quantum scattering calculations we combine the short-
range correlation potential with a long-range polariza-
tion potential. Our derivation follows the recipe of Jain
and Gianturco [23]. Jain and Gianturco are employing
the multi-component density funtional of Boroński and
Nieminen [24] for the short-range interaction and the
−α/r4 potential for the long-range. This approach has
been successfully used in many applications, for example
for positron scattering from acetylene [25,26] and tetra-
fluoromethane [27]. In this paper we want to show several
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alternatives to this approach. For the short-range correla-
tion potentials, we want to suggest alternative functionals
to the Boroński-Nieminen density functional [24]. These
are the functionals by Boroński and Stachowiak [28] and
by Drummond et al. [29,30]. For the long-range part of
the polarization potential we include a number of terms
of higher order. The importance of higher-order polariza-
tion terms in positron-atom scattering calculations has
been shown previously by Gianturco and De Fazio [31],
Gianturco et al. [32], and by Poveda et al. [33].

In Section 2 we show derivations of the correlation po-
tentials and give explicit equations for the short-range and
long-range potentials. Furthermore we list all relevant nu-
merical parameters and computational details about the
calculations, which are presented in Section 3.

In Section 3 we present our calculations for elastic cross
sections for positron collisions with the atoms argon and
krypton and with the molecules nitrogen and methane. In
Section 4 the paper ends with conclusions.

2 Theoretical and computational methods

2.1 Hamiltonian

For a given scattering channel c the total Hamiltonian of
the system

Htotal = Hc + Vc (1)

can be decomposed into the channel Hamiltonian Hc

and the interaction potential Vc (see e.g. Chapter 14 in
Joachain [34]). The channel Hamiltonian

Hc = Hmol +Ke+ (2)

is the sum of the HamiltionHmol of the target molecule (or
atom) and the kinetic energy of the impinging positron.

2.2 Density functional theory
for the positron-molecule interactions

In the following we will work within the Born-
Oppenheimer approximation and furthermore neglect cou-
plings of the various nuclear and electronic spins. Within
the framework of two-component density functional the-
ory the total wavefunction

Ψtotal(r1, r2, . . . , rN; rp) = Φmol(r1, r2, . . . , rN) × ϕ(rp)
(3)

can be expressed as a product of the electronic wavefunc-
tion of the target Φmol(r1, r2, . . . , rN) and the positronic
wavefunction ϕ(rp). The electronic wavefunction is the
lowest-energy eigenfunction of the molecular Hamiltonian

HmolΦmol(r1, r2, . . . , rN) = EGSΦmol(r1, r2, . . . , rN) (4)

where the eigenvalue EGS is the energy of the electronic
ground state.

With this ansatz the interaction potential Vc can be
written as

Vc = Vst + Vpcp. (5)

Here the static potential Vst contains all electrostatic in-
teractions between the positron and the target molecule,
including the interactions with the nuclei and the electron
charge cloud. The correlation-polarization potential Vpcp

describes the correlation between the positron and the tar-
get electrons and the long-range polarization of the target.
In the two-component density functional theory [35] this
potential plays a similar role as the exchange-correlation
potential in Kohn-Sham theory [36].

2.3 Scattering equations

Within the single-centre expansion (SCE) the positron
wavefunction is expressed as [37]

ϕ(rp) =
∑

lv

1
rp
ulv(rp)Xlv(r̂p), (6)

where rp is the radial distance of the positron from the
scattering center and r̂p is the unit vector in the direction
of the positron. Xlv are symmetry-adapted angular basis
functions. The indices lv represent the collection of in-
dices, including the irreducible representation of the elec-
tronic state of the target molecule (or atom) and the an-
gular momenta (for more details see e.g. Gianturco and
Jain [37]). The functions ulv are the corresponding ra-
dial parts of the wavefunction. With this Ansatz for the
positron wavefunction, we obtain, after integration over
the electronic degrees of freedom, a set of coupled differ-
ential equations for the radial function of the positron

(
d2

dr2p
− l(l + 1)

r2p
+ k2

)
ulv(rp)

= 2
∑

l′v′
〈lv|Vc|l′v′〉ul′v′(rp), (7)

where k =
√

2Ep is related to the collision energy Ep of
the positron in the usual way. The matrix elements of the
coupling potential are given by

〈lv|Vc|l′v′〉 =
∫
dr̂pX∗

lv(r̂p)Vc(rp)Xl′v′(r̂p). (8)

The set of coupled differential equations can be trans-
formed into a set of Volterra integral equations (see e.g.
Chap. 5 in Gianturco [38] and Franz [39])

U(R) =
∫ R

0

{J(R) ·N(x)

+ N(R) · J(x)} · V(x) ·U(x)dx. (9)

Here J and N are diagonal matrices containing the spheri-
cal Ricatti-Bessel and Ricatti-Neumann functions, respec-
tively. The matrix U(R) is related to the radial wave
function.
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In the asymptotic region the K-matrix is computed.
From the T-matrix, which is given by

T = 1 − (1 − iK) · (1 + iK)−1, (10)

the elastic integral cross section is computed as

σelastic =
π

k2

∑

lv

∑

l′v′
|T lv

l′v′ |2. (11)

2.4 Correlation-polarization potential

The correlation-polarization potential is devided into a
short-range and a long-range part [23]:

Vpcp(rp) =

{
Vcorr for rp ≤ rc

Vpol for rp > rc
(12)

where rc is the outermost crossing point of the two
potentials.

2.4.1 Correlation potential

We follow the ansatz of Gianturco and Jain [23] and derive
the correlation potential as the functional derivative of the
correlation energy

Vcorr = γ
δ

δρ−
Ecorr. (13)

Here ρ− is the electron density and γ = 1√
4π

is introduced
for spherical avering. Jain and Gianturco are using the
following relationship between the correlation energyEcorr

and the correlation enery εcorr per particle and per unit
volume

Ecorr =
∫
drρ−εcorr. (14)

This expression differs from the definition used orig-
inally by Boroński and Nieminen [24], Boroński and
Stachowiak [28] and by Drummond et al. [29,30], by re-
placing the positron density by the electron density. The
quantity εcorr is given as a function of the Wigner-Seitz
radius

rs =
(

3
4πρ−

)−1

. (15)

With this substitution we can express equation (13) as

Vcorr = γ

(
1 − 1

3
rs

d

drs

)
εcorr. (16)

Various parametrizations for a positron in the homogenous
electron gas are compared by Drummond et al. [29,30].
In this work we have implemented and tested four differ-
ent parametrizations, which are described in the following
paragraphs.

2.4.2 Parametrization by Boroński and Nieminen

Boroński and Nieminen [24] have constructed a functional
in such a way that the high-density limit (rs → 0) is given
by the analytic expression of Arponen and Pajanne [40].
The low-density limit (rs → ∞) is given by the energy
of the Positronium negative ion (Ps−). Between these two
limiting cases interpolation formulae are used in such a
way that the correlation energy is a continous and dif-
ferentiable function of the electron density. Boroński and
Nieminen [24] are giving the following parametrization for
the correlation energy per particle:

– for rs ≤ 0.302

εBN86
corr =

1
2

(
− 1.563√

rs

+ (0.0507 ln rs − 0.0807) ln rs + 1.144

)
(17)

– for 0.302 ≤ rs ≤ 0.56

εBN86
corr =

1
2

(
−0.92305− 0.05459

r2s

)
(18)

– for 0.56 ≤ rs ≤ 8.0

εBN86
corr =

1
2

(
− 13.15111

(rs + 2.5)2
+

2.8655
(rs + 2.5)

− 0.6298
)

(19)
– for the case 8.0 ≤ rs ≤ ∞

εBN86
corr =

1
2

(−179856.2768ρ2
− + 186.4207ρ− − 0.524

)
.

(20)

Gianturco and Jain [23] are giving the following explicit
equations for the correlation potential:

– for rs ≤ 0.302

V BN86
corr =

γ

2

(
−1.82√
rs

+ (0.051 ln rs − 0.115) ln rs + 1.167

)
(21)

– for 0.302 ≤ rs ≤ 0.56

V BN86
corr =

γ

2

(
−0.92305− 0.09098

r2s

)
(22)

– for 0.56 ≤ rs ≤ 8.0

V BN86
corr =

γ

2

(
− 8.7674rs

(rs + 2.5)3

− −13.151 + 0.9552rs
(rs + 2.5)2

− 1.8655
(rs + 2.5)

− 0.6298
)

(23)

– for the case 8.0 ≤ rs ≤ ∞
V BN86

corr =
γ

2
(−2 × 179856.2768ρ− + 186.4207) . (24)
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2.4.3 Parametrization by Boroński and Stachowiak

Boroński and Stachowiak [28] have computed the correla-
tion energy of one positron in the homogenous electron gas
with the perturbed hypernetted chain (PHNC) approach
over a broad range of electron densities. For various inter-
vals Boroński and Stachowiak have interpolated the cor-
relation energies and have connected the various density
regimes so, that the energies and their derivatives with re-
spect to the electron density are continous functions of the
rs parameter. In the range 0.1 < rs < 8 the correlation
energy is given by

εPHNC
corr =

1
2

(
a

(rs − d)2
+

b

(rs − d)
+ c

)
. (25)

Here we have an additional factor 1
2 compared to equa-

tion (2) in Boroński and Stachowiak [28], because they
are using Rydberg units (1 Rydberg = 1

2 atomic units).
Boroński and Stachowiak are providing two different
parametrizations, which we will refer as PHNCa and PH-
NCb. The PHNCa functional is characterized by the fol-
lowing parameters:
for 0.1 < rs < 1

a = 0.033921278
b = −0.6968003
c = −0.3509695
d = −0.07

and for 1 < rs < 8

a = −2.385415
b = 0.1732167
c = −0.4562613
d = −1.0

The PHNCb functional is defined through the following
parameters:
for 0.2 < rs < 8

a = −1.428222
b = −0.1715698
c = −0.3927594
d = −0.67

The corrlation potential is given by:

V PHNC
corr =

γ

2

(
2ad

3(rs − d)3
+

5a+ bd

3(rs − d)2
+

4b
3(rs − d)

+ c

)
.

(26)
Here we are using both functionals also beyond the ranges
given in the table. At high densities (rs < 0.1 and rs < 0.2,
respectively) the static potential dominates the interac-
tion between the positron and the target, so that the ex-
act form of the correlation potential does not matter too
much. At low densities (rs > 8) we are already in the
regime of the asymptotic polarization potential, so that
the exact form of the correlation potential in this density
regime does not influence the cross section.

2.4.4 Parametrization by Drummond et al.

Drummond et al. [29,30] are solving the problem of one
positron in the homogenous electron gas by means of the
Quantum Monte Carlo (QMC) method. For various elec-
tron densities the stabilization energy for the addition of
one positron is calculated. Drummond et al. [29,30] are
giving the following parametrization for the interpolation
of the correlation energy

εQMC
corr =

P

Q
, (27)

where

P = A−1r
−1
s +A0 +A1rs + CB2r

2
s (28)

and
Q = 1 +B1rs +B2r

2
s . (29)

Here
C = −0.262005

is the energy of the Positronium negative ion (Ps−), which
is the low-density limit (rs → ∞). The paramenters are
obtained by fitting to Quantum Monte Carlo calculations
for various values of rs:

A−1 = −0.260361
A0 = −0.261762
A1 = 0.00375534
B1 = 0.113718
B2 = 0.0270912.

Comparing the parametrizations of Boroński and
Stachowiak we can see that the PHNCa and PHNCb fun-
tionals can be expressed in the parametric form suggested
by Drummond et al.. The parameters are related in the
following way:

A−1 = 0 (30)

A0 =
a

2d2
− b

2d
+
c

2
(31)

A1 =
b

2d2
− c

d
(32)

B1 = −2
d

(33)

B2 =
1
d2

(34)

C =
c

2
. (35)

The correlation potential can be expressed as

V QMC
corr = γ

(
P

Q
− rs

3

(
P ′Q− PQ′

Q2

))
(36)

where
P ′ = −A−1r

−2
s +A1 + 2CB2rs (37)

and
Q′ = B1 + 2B2rs. (38)
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Table 1. Parameters for the asymptotic potential. All values
are in atomic units.

Target αDip,0 αDip,2 αQuad αOct B γ

Ar 11.070a – 52.4b 490b –164.3b 1083b

Kr 17.075a – 92.7b 793b –343.2b 2255b

N2 11.74d 4.593d 83.26e – –151.53g 927e

CH4 16.39f – 120.90f – –317.79g 2312f

a Experimental values from Holm and Kerl [41,42] as cited
in Schwerdtfeger [43]. b From tabulated values in Gianturco
et al. [32]. c From explicitly correlated calculations by Bishop
et al. [44–46]. d Obtained from dipole oscillator strength dis-
tribution by Kumar and Meath [47]. e From CCSD(T) cal-
culations by Maroulis [48]. f From CCSD(T) calculations by
Maroulis [49]. g From CCSD calculations by Coriani et al. [50].

2.4.5 Polarization potential

In the calculations on positron-atom scattering (here
argon and krypton) we are using the asymptotic form sug-
gested by Gianturco et al. [32]

Vpol(rp) = −αDip,0

2r4p
− αQuad

2r6p
− αOct

2r8p
+

B

2r7p
− γ

24r8p
, (39)

where αDip,0 is the isotropic static dipole polarizability,
αQuad is the isotropic static quadrupole polarizability, and
αOct is the isotropic static octupole polarizability. B is
the dipole-dipole – isotropic quadrupole hyperpolarizabil-
ity and γ is the dipole-dipole – isotropic dipole-dipole hy-
perpolarizability. In the calculations on positron-molecule
scattering (here nitrogen and methane) we are using the
following form for the polarization potential

Vpol(rp) = −αDip,0

2r4p
− αDip,2

2r4p
P2(cos θp)

− αQuad

2r6p
+

B

2r7p
− γ

24r8p
, (40)

where αDip,2 is the anisotropic static dipole polarizability
and P2(cos θp) is a Legendre polynomial. The values of
the parameters which we are using in our calculations are
collected in Table 1.

2.5 Computational details

2.5.1 Electronic structure calculations for atoms

We are using the MOLCAS program package [51] for the
electron structure calculations of the atoms Ar and Kr.
The complete active space self-consistent-field (CASSCF)
method is employed for calculating the electronic ground
state wavefunctions and densities. For Ar the active
space is generated by 8 active electrons in the orbitals
(3s, 3p, 3d, 4s, 4p, 5s, 5p), which results in 64 331 determi-
nants. For Kr the active space is generated by 8 active
electrons in the orbitals (4s, 4p, 4d, 5s, 5p, 6s, 6p), which
results in 415 306 determinants. We are using the con-
tracted gaussian basis set for Douglas-Kroll-Heß calcula-
tions of triple zeta valence quality plus polarization func-
tions (TZP-DKH) of Jorge et al. [52], which we obtained

from the EMSL Basis Set Library [53,54]. The Douglas-
Kroll-Heß method [55,56] is used to account for scalar rel-
ativistic effects of the target wave function. In order to
interface the CASSCF electron-density into our scatter-
ing code, we are using natural orbitals for the electronic
ground state (here the 1S0 state). In natural orbitals the
one-electron density matrix can be written as

ρ−(x1;x′
1)) =

∑

i

niψ̄i(x1)ψ̄∗
i (x′

1), (41)

where the ψ̄i are ortho-normal spin-orbitals with the pop-
ulation ni. For more details see e.g. Chapters 5 and 8 in
McWeeny [57] or Chapter 3 in Davidson [58].

2.5.2 Electronic structure calculations for molecules

We are using the TURBOMOLE program package [59]
for the electronic structure calculations of the target
molecules employing the B3LYP (Becke [60], three-
parameter, Lee-Yang-Parr [61]) exchange-correlation
functional.

For the nitrogen molecule (N2) the calculations are
done with a bondlength of 1.094 Å and using the triple-
zeta basis set 6-311++G** of Krihnan et al. [62] with
polarization and diffuse functions.

For the methane molecule (CH4) calculations are done
at a CH-bondlength of 1.089 Å using the TZP basis set of
Barbieri et al. [63], which we augmented by diffuse func-
tions of Dunning and Hay [64].

2.5.3 Quantum scattering calculations

We are using a modified version of the VOLPOS program
package [65] for the single-centre-expansion of the elec-
tron densities, for the construction of the potential and
the solution of the scattering equations by Volterra inte-
gration. In all calculations the radial grid was extended
up to a distance of 146 bohr. All potentials are expanded
up to Lmax = 24 and the positronic wavefunction up to
lmax = 12. The calculations for the atoms and the nitro-
gen molecule are done in the symmetry group D2h and for
methane in the C2v group. All irreducible representations
are included in the final cross sections. At the outermost
radial grid point we generate the K-matrices and compute
the elastic integral cross section.

3 Results and discussion

In Figures 1 and 2 we compare our calculations for the
Ar atom with cross sections from recent experiments and
calculations. Figure 2 shows results from the measure-
ments by Karwasz et al. [3], Jones et al. [7], and Zecca
et al. [6]. The experimental data of Karwasz et al. [3] and
Zecca et al. [6] does not contain corrections for angular
discrimination. The data by Jones et al. [7] includes some
angular correction and presents the total cross sections

http://www.epj.org
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Fig. 1. Scattering cross section for Ar. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Calculations by other
groups: total cross sections from Fursa and Bray [5] (thin black
solid line), elastic cross sections from Green et al. [4] (thin black
dashed line), and Jones et al. [7] (thin black dotted line). For
more details see main text.
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Fig. 2. Scattering cross section for Ar. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Experimental total cross
sections from Karwasz et al. [3] (blue squares) and Zecca
et al. [6] (red diamonds). Total cross sections excluding Positro-
nium formation from Jones et al. [7] (green circles), For more
details see main text.

without Positronium formation. Figure 1 shows the calcu-
lations done by Fursa and Bray [5] using the convergent-
close-coupling (CCC) method, by Green et al. [4] using
many-body perturbation theory (MBPT), and by Jones
et al. [7] using the relativistic optical potential (ROP)
method. Our calculations and those by Green et al. [4]
and Jones et al. [7] are done for elastic cross sections. The
calculations by Fursa and Bray [5] and the experiments
by Karwasz et al. [3] and Zecca et al. [6] are showing total
cross sections. In the energy region above the threshold
for Positronium formation and below 10 eV the difference
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Fig. 3. Scattering cross section for Kr. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Calculations by other
groups: total cross sections from Fursa and Bray [5] (thin black
solid line), elastic cross sections from Green et al. [4] (thin black
dashed line), and Makochekanwa et al. [9] (thin black dotted
line). For more details see main text.

between elastic and total cross section is mainly due to the
channel for Positronium formation. This channel opens at

EPs = Eion − E0, (42)

where Eion is the first ionization energy and E0 = 6.8 eV
is the binding energy of Ps. The first ionization energy
of the ground state of the Ar-atom is given as Eion =
15.759610 eV by Sansonetti and Martin in the Hand-
book of Basic Atomic Spectroscopic Data of the NIST
database [66] based on experiments by Velchev et al. [67].
This places the threshold for Ps formation at EPs =
8.96 eV. This position is marked by an arrow in Figures 1
and 2.

Our four sets of calculations give very similar results
to each other. The potentials PHNCa and PHNCb are
giving nearly identical cross sections. Both are slightly
larger than those obtained with the BN86 potential. The
QMC potential gives slighlty smaller cross sections than
the other three potentials. This ordering holds over the
complete energy range. The results from all four sets are
within the experimental uncertainties of the three shown
sets of experimental data. For collision energies below 5 eV
the calculations by Fursa and Bray [5], Green et al. [4] and
Jones et al. [7] give smaller cross sections than those ob-
tained in our calculations. For energies above 5 eV and up
to Ps-formation threshold the agreement between our cal-
culations and those by Fursa and Bray [5] and by Green
et al. [4] is better.

In Figures 3 and 4 we are showing a comparison of our
four sets of computed cross sections for the Kr atom with
a selection of recent calculated and experimental cross sec-
tions from the literature. Figure 4 shows the experimental
data sets of Jay and Coleman [10], Makochekanwa et al. [9]
and Zecca et al. [8]. Figure 3 shows the calculations done
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Fig. 4. Scattering cross section for Kr. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Experimental total cross
sections from Jay and Coleman [10] (blue squares) and Zecca
et al. [8] (red diamonds). Total cross sections excluding Positro-
nium formation from Makochekanwa et al. [9] (green circles).
For more details see main text.

by Fursa and Bray [5] using the CCC-method, by Green
et al. [4] using MBPT, and by Makochekanwa et al. [9]
using the ROP method.

As for argon, our calculated cross sections are elas-
tic cross sections and do not contain the Ps-formation
channel. The same applies for the calculations by Green
et al. [4] and Makochekanwa et al. [9]. The experimental
data sets from Jay and Coleman [10] from Zecca et al. [8]
and the calculations by Fursa and Bray [5] are total cross
sections and contain the Ps-formation channel. The data
by Jay and Coleman [10] are not absolute cross sections
but are scaled to previous experiments. The experimental
data from Makochekanwa et al. [9] present total cross sec-
tion without Positronium formation. The first ionization
energy of Kr in the electronic ground state is 13.99961 eV
as given in the NIST database [66] based on the measure-
ments by Yoon and Glab [68] and by Brandi et al. [69].
This places the threshold for Ps formation at 7.19 eV (see
arrow in Figs. 3 and 4).

The cross sections from our four sets of calculations
are very close to each other. Similar as for argon, the
potentials PHNCa and PHNCb give nearly identical re-
sults and produce the largest cross sections of our mod-
els. The BN86 potential give slightly lower cross sections,
followed by the QMC potential. The total cross sections
from the experiments by Jay and Coleman [10] and by
Zecca et al. [8] increase markedly at the threshold for
Ps-formation. The CCC-method of Fursa and Bray [5]
is reproducing the increase, while all other computations
do not account for Ps-formation. Up to the Ps-formation
threshold our calculated cross sections are slightly below
the measured data of Makochekanwa et al. [9] and Zecca
et al. [8] and slightly higher than the data by Jay and Cole-
man [10]. The CCC-calculations by Fursa and Bray [5] are
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Fig. 5. Scattering cross section for N2. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Calculations by other
groups: vibrational close-coupling calculations from Gianturco
and Mukherjee [74] (thin black dashed line), elastic cross sec-
tions from Mazon et al. [76] (thin black dashed-dotted line),
ro-vibrational close-coupling calculations from Mukherjee and
Mukherjee [75] (thin black dottd line), and elastic cross sec-
tions from Tenfen et al. [77] (thin black solid line). For more
details see main text.
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Fig. 6. Scattering cross section for N2. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Experimental total cross
sections from Charlton et al. [70] (black circles), Hoffmann
et al. [71] (magenta down-triangles), Karwasz et al. [3] (blue
squares), Sueoka and Hamada [72] (green up-triangles), and
Zecca et al. [73] (red diamonds). For more details see main
text.

giving the largest cross sections, followed by the MBPT
calculations by Green et al. [4], which are slighly larger
than our values. The ROP-calculations by Makochekanwa
et al. [9] are larger than our values for collision energies
below 2 eV and smaller at higher energies.

Figures 5 and 6 show our calculated cross sections
for the nitrogen molecule (N2) using the four different
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potentials along with selected computed and measured
cross sections from the literature. The measured cross
sections in Figure 6 are from experiments by Charlton
et al. [70] from 1984, Hoffmann et al. [71] from 1982,
Sueoka and Hamada [72] from 1993, Karwasz et al. [3]
from 2006, and Zecca et al. [73] from 2011. The shown
experimental data does not contain any corrections for
the angular discrimination error. Figure 5 also shows a se-
lection of calculations from other groups: Gianturco and
Mukherjee [74], Mukherjee and Mukherjee [75] Mazon
et al. [76], and Tenfen et al. [77]. Our calculations are
giving elastic cross sections using the fixed nuclei ap-
proximation in the body fixed reference frame. Therefore
rotational and vibrational effects are neglected and no
Ps-formation is included. The same is true for the cal-
culated cross sections by Mazon et al. [76] and by Tenfen
et al. [77]. The experimental data sets are showing to-
tal cross sections, which includes rotational, vibrational
and Ps-formation channels. The calculated cross sections
from Gianturco and Mukherjee [74] are including vibra-
tional inelastic channels and those by Mukherjee and
Mukherjee [75] are including vibrational and rotational
inelastic channels. For N2 the first ionization energy of the
ground state is at 15.581±0.008 eV as measured by Trickl
et al. [78]. This places the threshold for Ps-formation at
about 8.78 eV (see arrow in Figs. 5 and 6).

Below collision energies of 2 eV the more recent ex-
periments by Karwasz et al. [3] and Zecca et al. [73]
show a large increase with decreasing energies, whereas the
older measurements by Hoffmann et al. [71] and Sueoka
and Hamada [72] stay more or less constant. Charlton
et al. [70] do not provide data for these energies. Above
collision energies of 2 eV all five experiments give total
cross sections similar within 1 × 10−16 cm2. The exper-
imental data sets show the increase in the total cross
sections can be seen above the Ps-formation threshold.
The cross sections obtained from our computations show
the same ordering as observed for the other targets: the
potentials PHNCa and PHNCb potentials are giving the
largest cross sections, followed by the BN86 potential and
the QMC potential. Our four calculations agree well with
the more recent experiments by Karwasz et al. [3] and
by Zecca et al. [73]. The calculated cross sections from
Mukherjee and Gianturco [74] and from Mukherjee and
Mukherjee [75] are too low when compared to recent ex-
periments. The results from Gianturco and Mukherjee [74]
are very close to those by Mazon et al. [76]. Slighly higher
are the results from Mukherjee and Mukherjee [75]. The
calculations by Tenfen et al. [77] are employing an ab
initio potential to describe correlation and polarization.
They are very close to our calculations using the BN86
potential. At low collision energies all calculations from
the literature experience a minimum in the cross sections,
which also seems to be in the older experimental data
from Hoffman et al. [71] and Sueoka and Hamada [72],
but not in the more recent experimental data from Kar-
wasz et al. [3] and Zecca et al. [73].

In Figures 7 and 8 we show our results for positron
collisions with methane (CH4) along with some selected
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Fig. 7. Scattering cross section for CH4. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Calculations of elastic
cross sections by Zecca et al. [83] (thin black solid line). For
more details see main text.
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Fig. 8. Scattering cross section for CH4. Present calculations
of elastic cross sections with the potentials BN86 (red dashed
line), PHNCa (green dashed-dotted line), PHNCb (green dot-
ted line), and QMC (blue solid line). Experimental total cross
sections from Charlton et al. [79] (black circles), Dababneh
et al. [80] (magenta squares), Floeder et al. [81] (blue down-
triangles), Sueoka and Mori [82] (green up-triangles), and
Zecca et al. [83] (red diamonds). For more details see main
text.

theoretical and experimental results from the literature.
The measured cross section data are from the experi-
ments by Charlton et al. [79], Dababneh et al. [80], Floeder
et al. [81], Sueoka and Mori [82], and Zecca et al. [83]. Also
shown in Figure 7 are calculations done by Zecca et al. [83]
using the Schwinger-method. Our calculated cross sec-
tions are elastic cross sections within the fixed-nuclei ap-
proximation in the body fixed reference frame. There-
fore no rotational, vibrational and Ps-formation channels
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are included. The same applies to the calculations by
Zecca et al. [83]. The experimental data sets are showing
total cross sections and include all these channels. In
methane the first ionization energy of the ground state
is 12.61±0.4 eV according to measurements by Berkowitz
et al. [84]. This places the threshold for Ps-formation at
5.81 eV (see arrow in Figs. 7 and 8).

Our four sets of calculations are very close to each
other. As for the other targets, the PHNCa and PHNCb
potentials gives the largest cross sections, followed by the
BN86 potential and the QMC potential. The largest mea-
sured cross sections are those by Zecca et al. [83] and
Floeder et al. [81]. The smallest cross sections have been
measured by Charlton et al. [79]. Our calculated cross sec-
tions are inbetween the various experimental data sets. All
experimental data sets show an increase in the cross total
section around the Ps-formation threshold. This feature
is not reproduced by our calculations, because we do not
include this channel. The calculated cross sections from
Zecca et al. [83] are much lower than our calculated cross
sections and are close to the measured cross sections by
Charlton et al. [79].

In order to estimate the effect of neglecting the vi-
brational inelastic channels, one can have a look at the
computations done by Nishimura and Gianturco [85] for
vibrational inelastic cross sections. Summing over all four
vibrational modes, the vibrational inelastic cross sec-
tion appears to be 0.3 × 10−16 cm2 at the lowest vibra-
tional threshold (0.2 eV), reaches a maximum of roughly
0.8×10−16 cm2 at 0.5 eV and decreases realatively quickly.
At 5.0 eV the sum of the vibrational inelastic cross sections
is around 0.2×10−16 cm2. The inclusion of the vibrational
inelastic channels will bring our cross sections closer to the
measured values of Zecca et al. [83] and Floeder et al. [81],
but cannot fully explain the differences between our cal-
culations the their measurements.

4 Conclusions

In this paper we present four local positron-electron
correlation potentials. All four potentials are derived
from existing multicomponent density functionals. The
BN86-potentials is derived from the Boroński-Nieminen
functional. The QMC-potential is based on Quantum-
Monte-Carlo calculations by Drummond et al. [29,30].
The potentials PHNCa and PHNCb are based on per-
turbed hypernetted chain calculations by Boroński and
Stachowiak [28]. All four correlation potentials are used
to describe short-range interactions between positrons and
electrons and are combined with a multi-term expansion
to describe the long-range polarization forces between a
positron and a multi-electron atom or molecule. For all po-
tentials we present simple analytical forms, which allows
an easy implementation into existing computer programs.

The potentials are applied in quantum scattering cal-
culations for elastic collisions of positrons with the two
rare gas atoms argon and krypton and the molecules ni-
trogen and methane. The elastic cross sections are com-
pared with scattering data from recent experiments and

calculations. The elastic cross sections computed with the
PHNCa-potential and PHNCb-potential are giving very
similar results to each other. For all targets and all colli-
sion energies they are are larger than the cross sections ob-
tained with the BN86-potential. The QMC-potential gives
the smallest cross sections in this set. For argon and nitro-
gen all four potentials give cross sections that are in good
agreement with the most recent experiments and calcu-
lations. For krypton the present calculations are between
the various data sets from the most recent experiments
and calculations. For methane our calculated cross sec-
tions are lower than the most recent experimental data
sets and larger than older data sets or other calculations
from the literature.

To conclude, we recommend the QMC potential for
future calculations of cross sections, because the mathe-
matical expression is more simple and it is valid over the
whole electron-density regime.
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