619 research outputs found

    Navigating Success: First-Generation Pathways to Institutional Integration

    Get PDF
    Guided pathways mobile applications are one technology-based tool that colleges and universities have implemented in an attempt to educate and guide students through the myriad steps necessary to matriculate, integrate and successfully graduate from their institution at scale. Using Bourdieu’s concepts of habitus and capital, Astin’s model of student involvement and Tinto’s model of student integration as a conceptual framework, and building upon the work of Slanger et al. (2015), this study investigated if the Educational Stress scale score from the College Student Inventory (CSI) can act as a measure of student habitus. In addition, this study used institutional data sets to investigate the relationships between habitus, first-generation student status and the utilization of the Navigate Student guided pathways mobile application on the matriculation, attempted credits and percentage earned credits for 4,771 first-time freshmen accepted to a large, public, high-research university in 2019. Results indicate that first-generation college students had higher Educational Stress scale scores, were less likely to matriculate, attempted fewer credits, earned a smaller percentage of credits, and utilized the guided pathways application more than continuing-generation students. These preliminary results indicate that further research is warranted on utilization of the Educational Stress scale score as a measure of student habitus, as well as on usage patterns of the guided pathways mobile application and resulting impacts. Recommendations for further study are introduced

    Determining the Electronic Confinement of a Subsurface Metallic State

    Get PDF
    Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers, are of particular interest for quantum computer applications, yet a quantitative measure of their electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm at full width at half-maximum, a result that is in excellent agreement with density functional theory calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley splitting observed for the 1Γ and 2Γ states

    The evolution of the ISOLDE control system

    Get PDF
    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft WindowsTM through a Novell NetWare4TM local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface

    Impact of national lockdown on the hyperacute stroke care and rapid transient ischaemic attack outpatient service in a comprehensive tertiary stroke centre during the COVID-19 pandemic

    Get PDF
    Background: The COVID-19 pandemic is having major implications for stroke services worldwide. We aimed to study the impact of the national lockdown period during the COVID-19 outbreak on stroke and transient ischemic attack (TIA) care in London, UK. Methods: We retrospectively analyzed data from a quality improvement registry of consecutive patients presenting with acute ischemic stroke and TIA to the Stroke Department, Imperial College Health Care Trust London during the national lockdown period (between March 23rd and 30th June 2020). As controls, we evaluated the clinical reports and stroke quality metrics of patients presenting with stroke or TIA in the same period of 2019. Results: Between March 23rd and 30th June 2020, we documented a fall in the number of stroke admissions by 31.33% and of TIA outpatient referrals by 24.44% compared to the same period in 2019. During the lockdown, we observed a significant increase in symptom onset-to-door time in patients presenting with stroke (median = 240 vs. 160 min, p = 0.020) and TIA (median = 3 vs. 0 days, p = 0.002) and a significant reduction in the total number of patients thrombolysed [27 (11.49%) vs. 46 (16.25%, p = 0.030)]. Patients in the 2020 cohort presented with a lower median pre-stroke mRS (p = 0.015), but an increased NIHSS (p = 0.002). We registered a marked decrease in mimic diagnoses compared to the same period of 2019. Statistically significant differences were found between the COVID and pre-COVID cohorts in the time from onset to door (median 99 vs. 88 min, p = 0.026) and from onset to needle (median 148 vs. 126 min, p = 0.036) for thrombolysis whilst we did not observe any significant delay to reperfusion therapies (door-to-needle and door-to-groin puncture time). Conclusions: National lockdown in the UK due to the COVID-19 pandemic was associated with a significant decrease in acute stroke admission and TIA evaluations at our stroke center. Moreover, a lower proportion of acute stroke patients in the pandemic cohort benefited from reperfusion therapy. Further research is needed to evaluate the long-term effects of the pandemic on stroke care

    Notes on a paper of Mess

    Full text link
    These notes are a companion to the article "Lorentz spacetimes of constant curvature" by Geoffrey Mess, which was first written in 1990 but never published. Mess' paper will appear together with these notes in a forthcoming issue of Geometriae Dedicata.Comment: 26 page

    Dirichlet fundamental domains and complex-projective varieties

    Get PDF
    We prove that for every finitely-presented group G there exists a 2-dimensional irreducible complex-projective variety W with the fundamental group G, so that all singularities of W are normal crossings and Whitney umbrellas.Comment: 1 figur

    Mechanical thrombectomy in acute basilar artery stroke: a systematic review and Meta-analysis of randomized controlled trials

    Get PDF
    Background: The evidence for mechanical thrombectomy in acute basilar artery occlusion has until now remained inconclusive with basilar artery strokes associated with high rates of death and disability. This systematic review and meta-analysis will summarize the available evidence for the effectiveness of mechanical thrombectomy in acute basilar artery occlusion compared to best medical therapy. Methods: We conducted a systematic review and meta-analysis of randomized controlled trials using Embase, Medline and the Cochrane Central Register of Controlled Trials (CENTRAL). We calculated risk ratios (RRs) and 95% confidence intervals (CIs) to summarize the effect estimates for each outcome. Results: We performed a random effects (Mantel-Haenszel) meta-analysis of the four included randomized controlled trials comprising a total of 988 participants. We found a statistically significant improvement in the rates of those with a good functional outcome (mRS 0–3, RR 1.54, 1.16–2.06, p = 0.003) and functional independence (mRS 0–2, RR 1.69, 1.05–2.71, p = 0.03) in those who were treated with thrombectomy when compared to best medical therapy alone. Thrombectomy was associated with a higher level of sICH (RR 7.12, 2.16–23.54, p = 0.001) but this was not reflected in a higher mortality rate, conversely the mortality rate was significantly lower in the intervention group (RR 0.76, 0.65–0.89, p = 0.0004). Conclusions: Our meta-analysis of the recently presented randomized controlled studies is the first to confirm the disability and mortality benefit of mechanical thrombectomy in basilar artery stroke

    Modulation of cystic fibrosis lung disease by variants in interleukin-8

    Get PDF
    Cystic fibrosis pulmonary disease is characterized by excessive and prolonged inflammation. CF Pulmonary disease severity exhibits considerable variation that, to some extent, appears to be due to the presence of modifier genes. Several components of the inflammatory response are known to have altered regulation in the CF lung. Genetic variants in 52 inflammatory genes were tested for associations with lung disease indices in a CF patient population (n=737) homozygous for the ΔF508 cystic fibrosis transmembrane conductance regulator mutation. Variants in 3 inflammatory genes showed significant genotypic associations with CF lung disease severity, including IL8 and previously reported TGFβ11 (p≤0.05). When analyzed by gender, it was apparent that IL8 variant associations were predominantly due to males. The IL8 variants were tested in an additional CF population (n=385) and the association in males verified (p≤0.01). The IL8 variants were in strong linkage disequilibrium with each other (R2≥0.82), while variants in neighboring genes CXCL6, RASSF6 and PF4V1 did not associate (p≥0.26) and were in weaker LD with each other and with the IL8 variants (0.01≤R2≤0.49). Studies revealed differential expression between the IL8 promoter variant alleles (p<0.001). These results suggest that IL8 variants modify CF lung disease severity and have functional consequences

    Rationally designed probe for reversible sensing of zinc and application in cells

    Get PDF
    Biologically compatible fluorescent ion sensors, particularly those that are reversible, represent a key tool for answering a range of fundamental biological questions. We report a rationally designed probe with a 6′-fluoro spiropyran scaffold (5) for the reversible sensing of zinc (Zn2+) in cells. The 6′-fluoro substituent overcomes several limitations normally associated with spiropyran-based sensors to provide an improved signal-to-background ratio and faster photoswitching times in aqueous solution. In vitro studies were performed with 5 and the 6′-nitro analogues (6) in HEK 293 and endothelial cells. The new spiropyran (5) can detect exogenous Zn2+ inside both cell types and without affecting the proliferation of endothelial cells. Studies were also performed on dying HEK 293 cells, with results demonstrating the ability of the key compound to detect endogenous Zn2+ efflux from cells undergoing apoptosis. Biocompatibility and photoswitching of 5 were demonstrated within endothelial cells but not with 6, suggesting the future applicability of sensor 5 to study intracellular Zn2+ efflux in these systems.Sabrina Heng, Philipp Reineck, Achini K. Vidanapathirana, Benjamin J. Pullen, Daniel W. Drumm, Lesley J. Ritter, Nisha Schwarz, Claudine S. Bonder, Peter J. Psaltis, Jeremy G. Thompson, Brant C. Gibson, Stephen J. Nicholls, and Andrew D. Abel
    • …
    corecore