54 research outputs found

    Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece)

    Get PDF
    International audienceThe formation of shallow, caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8 ± 0.4-ka Cape Riva eruption of Santorini discharged >10 km3 of crystal-poor dacitic magma, along with <0.004 km3 year-1. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurisation of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse

    Volcanism of the South Aegean Volcanic Arc

    Get PDF
    Volcanism along the South Aegean Volcanic Arc began about 4.7 Ma and has lasted until the present day, with eruptions at Methana, Milos, Santorini, Kolumbo and Nisyros Volcanoes in historical times. These volcanoes can be grouped into five volcanic fields: three western fields of small, mostly monogenetic edifices, and two central/eastern fields with composite cones and calderas that have produced large explosive eruptions. Crustal tectonics exerts a strong control over the locations of edifices and vents at all five volcanic fields. Tephra and cryptotephra layers in deep-marine sediments preserve a continuous record of arc volcanism in the Aegean as far back as 200,000 years. Hazards from the volcanoes include high ash plumes, pyroclastic flows and tsunamis. Monitoring networks should be improved and expanded

    Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions

    Get PDF
    International audienceA type example of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. These explosions are interpreted to be caused by the pressurization of a conduit by a shallow highly crystalline and degassed magma plug. We test such an interpretation by combining the pressures and porosities of the pre-explosive magma column proposed by Burgisser et al. (2010, doi:10.1016/j.jvolgeores.2010.04.008) into a physical model that reconstructs a depth-referenced density profile of the column for four mechanisms of pressure buildup. Each mechanism yields a different overpressure profile: 1) gas accumulation, 2) conduit wall elasticity, 3) microlite crystallization, and 4) magma flowage. For the first three mechanisms, the three-part vertical layering of the conduit prior to explosion was spatially distributed as a dense cap atop the conduit with a thickness of a few tens of meters, a transition zone of 400–700 m with heterogeneous vesicularities, and, at greater depth, a more homogeneous, low-porosity zone that brings the total column length to ~ 3.5 km. A shorter column can be obtained with mechanism 4: a dense cap of less than a few meters, a heterogeneous zone of 200–500 m, and a total column length as low as 2.5 km. Inflation/deflation cycles linked to a periodic overpressure source offer a dataset that we use to constrain the four overpressure mechanisms. Magma flowage is sufficient to cause periodic edifice deformation through semi-rigid conduit walls and build overpressures able to trigger explosions. Gas accumulation below a shallow plug is also able to build such overpressures and can occur regardless of magma flowage. The concurrence of these three mechanisms offers the highest likelihood of building overpressures leading to the 1997 explosion series. We also explore the consequences of sudden (eruptive) overpressure release on our magmatic columns to assess the role of syn-explosive vesiculation and pre-fragmentation column expansion. We find that large shallow overpressures and efficient syn-explosive vesiculation cause the most dramatic pre-fragmentation expansion. This leads us to depict two end-member pictures of a Vulcanian explosion. The first case corresponds to the widely accepted view that the downward motion of a fragmentation front controls column evacuation. In the second case, syn-explosive column expansion just after overpressure release brings foamed-up magma up towards an essentially stationary and shallow fragmentation front

    Quantitative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale X-ray computed microtomography: comparison with results from 2D image analysis

    Get PDF
    International audienceX-ray computed microtomography (μCT) was carried out on four pyroclasts from the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. Three-dimensional data from multiple image stacks with different spatial resolutions (0.37, 4-8, and 17.4 μm px−1) were combined to generate size distributions of vesicles, inter-vesicle throats, crystals, and Fe-Ti oxides over a 3.4-860-μm size range, and to compare the results with those obtained by 2D image analysis on the same samples. Qualitative textural observations are in good agreement with those made in 2D, but μCT provides better resolution of textural features and spatial relationships. Calculation of size distributions requires automated decoalescence of the connected vesicle network. Problems related to this process, in part due to the high porosity of pumice, result in potential artefacts in the calculated size distributions, which are discussed in detail. The main modes of the 3D vesicle volume distributions are systematically shifted to larger sizes compared with those of the 2D distributions. Sample total vesicularities obtained in 3D are within 13 vol.% of those found in 2D, and within 10 vol.% of those measured by He-pycnometry. Total number densities of vesicles and Fe-Ti oxides from the two methods are consistent only to the first order, 3D values ranging from 37% to 309% of those in 2D. Vesicle coalescence, investigated by examining inter-vesicle throat size distributions, occurred in all pyroclasts between neighbouring vesicles of many sizes. The larger the vesicle, the more connected it is

    Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat

    Get PDF
    International audienceSoufrière Hills Volcano had two periods of repetitive Vulcanian activity in 1997. Each explosion discharged the contents of the upper 0.5–2 km of the conduit as pyroclastic flows and fallout: frothy pumices from a deep, gas-rich zone, lava and breadcrust bombs from a degassed lava plug, and dense pumices from a transition zone. Vesicles constitute 1–66 vol.% of breadcrust bombs and 24–79% of pumices, all those larger than a few tens of µm being interconnected. Small vesicles ( few hundreds of µm) in pumices are interpreted as pre-dating explosion, implying pre-explosive conduit porosities up to 55%. About a sixth of large vesicles in pumices, and all those in breadcrust bombs, are angular voids formed by syn-explosive fracturing of amphibole phenocrysts. An intermediate-sized vesicle population formed by coalescence of the small syn-explosive bubbles. Bubble nucleation took place heterogeneously on titanomagnetite, number densities of which greatly exceed those of vesicles, and growth took place mainly by decompression. Development of pyroclast vesicle textures was controlled by the time interval between the onset of explosion–decompression and surface quench in contact with air. Lava-plug fragments entered the air quickly after fragmentation (not, vert, similar 10 s), so the interiors continued to vesiculate once the rinds had quenched, forming breadcrust bombs. Deeper, gas-rich magma took longer (not, vert, similar 50 s) to reach the surface, and vesiculation of resulting pumice clasts was essentially complete prior to surface quench. This accounts for the absence of breadcrusting on pumice clasts, and for the textural similarity between pyroclastic flow and fallout pumices, despite different thermal histories after leaving the vent. It also allowed syn-explosive coalescence to proceed further in the pumices than in the breadcrust bombs. Uniaxial boudinage of amphibole phenocrysts in pumices implies significant syn-explosive vesiculation even prior to magma fragmentation, probably in a zone of steep pressure gradient beneath the descending fragmentation front. Syn-explosive decompression rates estimated from vesicle number densities (> 0.3–6.5 MPa s− 1) are consistent with those predicted by previously published numerical models

    Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece).

    Get PDF
    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age 'Minoan' eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth's ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions

    Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

    Get PDF
    © 2014, Springer-Verlag Berlin Heidelberg. We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites

    New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis

    No full text
    International audienceThe late-seventeenth century BC Minoan eruption of Santorini discharged 30–60 km3 of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE–SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption—a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together they are interpreted as the contents of a small, variably crystallized intrusion that was fragmented and discharged during the eruption, mostly during phases 0 and 1. The microphenocryst-rich pumices, hornblende diorite, andesitic enclaves, and fragments of pre-Minoan intracaldera andesitic lava together form a chemically distinct suite of Ba-rich, Zr-poor andesites that is unique in the products of Santorini since 530 ka. Once the Minoan magma reservoir was primed for eruption by recharge-generated pressurization, the rhyodacite moved upwards by exploiting the plane of weakness offered by the pre-existing andesite–diorite intrusion, dragging some of the crystal-rich contents of the intrusion with it

    Investigation of surge-derived pyroclastic flow formation by numerical modelling of the 25 June 1997 dome collapse at Soufrière Hills Volcano, Montserrat

    No full text
    International audienceDeposits from ash-cloud surges associated with dome collapse can, under certain conditions, be remobilised to form surge-derived pyroclastic flows (SDPFs). Using numerical modelling, we reproduce the emplacement of these flows and investigate the conditions that favour their genesis. We use the new version of the numerical model VolcFlow, which simulates the two components of a pyroclastic flow: the basal avalanche and the overriding ash-cloud surge. The basal avalanche (primary block-and-ash flows and SDPFs) are simulated using three previously published rheological laws: plastic, frictional and frictional velocity-weakening rheologies. Applied to the 25 June 1997 dome collapse at Soufrière Hills Volcano, the models reproduce to different degrees the deposit footprints formed by the block-and-ash flows, the ash-cloud surges and the SDPFs. In the plastic model, SDPFs occur if the ash-cloud surge deposit exceeds a threshold thickness that allows it to remobilise and flow. In the frictional models, SDPFs occur only if ash-cloud surge deposition takes place on a slope exceeding the friction angle of the ash. Results also highlight that SDPFs appeared so clearly in 1997 at Montserrat due to a combination of topographic factors: (i) a bend in the Mosquito Ghaut drainage that allowed the ash-cloud surges to detach, (ii) a depositional area on the watershed between the eastern and western drainage channels and (iii) a network of tributaries that drained all the remobilised mass into Dyer's River to form a single, large SDPF. Our model could be a promising tool for the future forecasting of hazards posed by surge-derived pyroclastic flows
    • …
    corecore