30 research outputs found

    Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe

    Full text link
    Nuclear spin polarization dynamics are measured in optically pumped individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear polarization decay times of ~ 1 minute have been found indicating inefficient nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in externally applied magnetic field. A spin diffusion coefficient two orders lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev

    Demography and mating system shape the genome-wide impact of purifying selection in Arabis alpina

    Get PDF
    YesPlant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina. We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina. These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707492115/-/DCSupplemental

    Molecular population genetics and dynamics of chestnut (Castanea sativa) in europe: Inferences for gene conservation and tree improvement

    No full text

    The use of Abell-Tersoff potentials in atomistic simulations of InGaAsSb/GaAs

    No full text
    In this paper we show the use of an optimally parameterized empirical potential of the Abell–Tersoff type to study the strain energy of the quaternary alloy InGaAsSb. We use our results to compute modified segregation energies in an improved kinetic model of segregation for the combined effects of group III and V exchange processes during pitaxial growth and compare with experimental data from Scanning Tunnelling Microscopy

    Control of Strain in GaSbAs/InAs/GaAs Quantum Dots

    Get PDF
    We discuss strain simulations of quantum dot structures covered with a GaSbAs strain reducing capping layer in the presence of Sb segregation. Cross Sectional Scanning Tunneling Microscopy shows strong Sb and In segregation in the material surrounding the quantum dot. Using the three layer model originally proposed for the SiGe system by D. J. Godbey, M. G. Ancona, J. Vac. Sci. Technol. A 15, 976 (1997) we accurately calculate the segregation profile and include a non uniform composition to our models. Using atomistic modeling, we present strain maps of the quantum dot structures that show the propagation of the strain into the GaAs region is strongly affected by the shape and composition of the strain reduction layer

    Study of the microwave vacuum drying process for a granulated product

    No full text
    The objectives of this work were to study and evaluate the process of drying a pharmaceutical granule from 21% to 3 % (d.b.) moisture, also determining the power absorbed by the product, using a microwave assisted vacuum dryer with two absolute pressures: 50 and 75 mbar. A specific objective was to compare the drying kinetics of the microwave assisted vacuum process (MAVP) with two other drying processes, one using hot air convection and the other combining microwaves with hot air convection. The results of such a study showed that the drying kinetics were not affected by the vacuum levels, whereas the absorbed microwave power was higher for smaller vacuum levels. It was also observed that the samples obtained by the microwave assisted vacuum process, when submitted to compression, complied with the required specifications. The drying kinetics of the MAVP showed the shortest drying times when compared to the other drying processes
    corecore