30 research outputs found

    Familial relative risks for breast cancer by pathological subtype: a population-based cohort study.

    Get PDF
    INTRODUCTION: The risk of breast cancer to first degree relatives of breast cancer patients is approximately twice that of the general population. Breast cancer, however, is a heterogeneous disease and it is plausible that the familial relative risk (FRR) for breast cancer may differ by the pathological subtype of the tumour. The contribution of genetic variants associated with breast cancer susceptibility to the subtype-specific FRR is still unclear. METHODS: We computed breast cancer FRR for subtypes of breast cancer by comparing breast cancer incidence in relatives of breast cancer cases from a population-based series with known estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor 2 (HER2) status with that expected from the general population. We estimated the contribution to the FRR of genetic variants associated with breast cancer susceptibility using subtype-specific genotypic relative risks and allele frequencies for each variant. RESULTS: At least one marker was measured for 4,590 breast cancer cases, who reported 9,014 affected and unaffected first-degree female relatives. There was no difference between the breast cancer FRR for relatives of patients with ER-negative (FRR = 1.78, 95% confidence intervals (CI): 1.44 to 2.11) and ER-positive disease (1.82, 95% CI: 1.67 to 1.98), P = 0.99. There was some suggestion that the breast cancer FRR for relatives of patients with ER-negative disease was higher than that for ER-positive disease for ages of the relative less than 50 years old (FRR = 2.96, 95% CI: 2.04 to 3.87; and 2.05, 95% CI: 1.70 to 2.40 respectively; P = 0.07), and that the breast cancer FRR for relatives of patients with ER-positive disease was higher than for ER-negative disease when the age of the relative was greater than 50 years (FRR = 1.76, 95% CI: 1.59 to 1.93; and 1.41, 95% CI: 1.08 to 1.74 respectively, P = 0.06). We estimated that mutations in BRCA1 and BRCA2 explain 32% of breast cancer FRR for relatives of patients with ER-negative and 9.4% of the breast cancer FRR for relatives of patients with ER-positive disease. Twelve recently identified common breast cancer susceptibility variants were estimated to explain 1.9% and 9.6% of the FRR to relatives of patients with ER-negative and ER-positive disease respectively. CONCLUSIONS: FRR for breast cancer was significantly increased for both ER-negative and ER-positive disease. Including receptor status in conjunction with genetic status may aid risk prediction in women with a family history.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen.

    Get PDF
    INTRODUCTION: Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. METHODS: This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. RESULTS: In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. CONCLUSIONS: CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore