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Abstract

Introduction: The risk of breast cancer to first degree relatives of breast cancer patients is approximately twice
that of the general population. Breast cancer, however, is a heterogeneous disease and it is plausible that the
familial relative risk (FRR) for breast cancer may differ by the pathological subtype of the tumour. The contribution
of genetic variants associated with breast cancer susceptibility to the subtype-specific FRR is still unclear.

Methods: We computed breast cancer FRR for subtypes of breast cancer by comparing breast cancer incidence in
relatives of breast cancer cases from a population-based series with known estrogen receptor (ER), progesterone
receptor (PR) or human epidermal growth factor receptor 2 (HER2) status with that expected from the general
population. We estimated the contribution to the FRR of genetic variants associated with breast cancer
susceptibility using subtype-specific genotypic relative risks and allele frequencies for each variant.

Results: At least one marker was measured for 4,590 breast cancer cases, who reported 9,014 affected and
unaffected first-degree female relatives. There was no difference between the breast cancer FRR for relatives of
patients with ER-negative (FRR = 1.78, 95% confidence intervals (CI): 1.44 to 2.11) and ER-positive disease (1.82, 95%
CI: 1.67 to 1.98), P = 0.99. There was some suggestion that the breast cancer FRR for relatives of patients with ER-
negative disease was higher than that for ER-positive disease for ages of the relative less than 50 years old (FRR =
2.96, 95% CI: 2.04 to 3.87; and 2.05, 95% CI: 1.70 to 2.40 respectively; P = 0.07), and that the breast cancer FRR for
relatives of patients with ER-positive disease was higher than for ER-negative disease when the age of the relative
was greater than 50 years (FRR = 1.76, 95% CI: 1.59 to 1.93; and 1.41, 95% CI: 1.08 to 1.74 respectively, P = 0.06).
We estimated that mutations in BRCA1 and BRCA2 explain 32% of breast cancer FRR for relatives of patients with
ER-negative and 9.4% of the breast cancer FRR for relatives of patients with ER-positive disease. Twelve recently
identified common breast cancer susceptibility variants were estimated to explain 1.9% and 9.6% of the FRR to
relatives of patients with ER-negative and ER-positive disease respectively.

Conclusions: FRR for breast cancer was significantly increased for both ER-negative and ER-positive disease.
Including receptor status in conjunction with genetic status may aid risk prediction in women with a family history.

Introduction
Family history is a well established risk factor for breast
cancer, with the familial relative risk (FRR) being
approximately two-fold for first degree relatives of
breast cancer patients compared with controls from the

general population [1]. FRR for breast cancer varies
both with age of cancer diagnosis of the index case and
the age of the relative, and increases with the number of
affected relatives [1,2]. The risk is higher in monozygotic
twins of breast cancer cases than dizygotic twins [3].
Moreover, none of the known environmental risk factors
for breast cancer appear to influence FRR [1]. These
findings suggest that FRR for breast cancer is a direct
reflection of the genetic component of the disease [3,4].
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High risk alleles such as BRCA1 and BRCA2 explain less
than 20% of the FRR [4] and the residual familial risk is
best described by a polygenic model comprising multiple
variants, each of modest risk [5]. This model is sup-
ported by the recent discovery of common low risk var-
iants through genome wide association studies (GWAS)
[6-12]. Interestingly, most of the genetic variants asso-
ciated with breast cancer susceptibility discovered to
date have stronger associations with estrogen receptor
(ER)-positive than ER-negative breast cancer
[9,10,13,14]. Conversely tumours in BRCA1 mutation-
carriers are more likely to be ER-negative than tumours
in non-carriers [15]. It is plausible therefore that FRR of
breast cancer varies by pathological characteristics of
the tumour of the index case.
The division of breast cancer into ER-negative and

ER-positive disease is well-established. These subtypes
have been differentiated for example, by their distinct
age-specific incidence patterns and prognosis [16]. Sev-
eral major sub-types of breast cancer can also be defined
on the basis of joint expression of three immunohisto-
chemical markers commonly used in clinical practice -
ER, PR and HER2. Luminal tumours are those that
express either ER or PR. These can be divided according
to HER2 expression into HER2 expressing and non-
expressing phenotypes. The non-luminal tumours are
ER- and PR- negative and may be divided into HER2
expressing and triple negative (TN) tumours. The TN
phenotype is often regarded as synonymous with the
basal type tumours as classified by gene expression stu-
dies, but several studies have shown that the TN
tumours that express basal markers are different from
those that do not [17,18]. Basal-like breast cancer
defined by five biomarkers has superior prognostic value
than triple-negative phenotype [19]. Basal type tumours
are particularly prevalent in BRCA1 associated breast
cancer [20].
We used a large population based case series, Studies

of Epidemiology and Risk factors in Cancer Heredity
(SEARCH), and a retrospective cohort design to com-
pute FRRs separately for relatives of patients with differ-
ent tumour subtypes, primarily ER-positive and ER-
negative disease, but also subtypes defined by PR and
HER2, where data were available. Subtype information
was available only for the tumour diagnosed in the pro-
band, but not for tumours diagnosed in the relatives.
Breast cancer FRRs for each subtype, were calculated by
comparing the incidence of breast cancer in relatives of
cases with published incidences in the general popula-
tion. We further estimated the contribution of the breast
cancer susceptibility genes identified to date to the sub-
type specific FRR. Knowledge of the FRR for breast can-
cer by disease subtype can provide insights into genetic
predisposition to ER, PR and HER2 specific disease.

Such information can also be incorporated in risk algo-
rithms aimed at estimating the risk of developing breast
cancer [21,22].

Materials and methods
Study participants
Study participants were selected as described by Pharoah
et al. [23]. In brief, data on breast cancer patients were
drawn from Studies of Epidemiology and Risk factors in
Cancer Heredity (SEARCH), an ongoing population-
based study with cases ascertained through the Eastern
Cancer Registration and Information Centre (ECRIC).
All patients diagnosed with invasive breast cancer below
age 55 years since 1991 and still alive in 1996 (prevalent
cases, median age 48 years), together with all those diag-
nosed below age 70 years between 1996 and the present
(incident cases, median age 54 years) were eligible to
take part. The ethnic background, as reported on the
questionnaires, was white for 98% of cases. Study parti-
cipants were invited to complete an epidemiological
questionnaire that included questions on family history,
reproductive history, oral contraceptive and hormone
replacement therapy use, past medical history and pre-
vious examination of the breast by mammography. The
family history data included details of all first degree
relatives and grandparents, their date and place of birth,
date of death and any history of cancer. Details of any
other relatives known by the case to have had cancer
were also ascertained. Ascertainment of cancers in rela-
tives was not independently confirmed through refer-
ence to cancer registry data.
Tissue micro-arrays were constructed from tumours

for 2,659 of the cases. These were stained for ER, PR
and HER2 and scored as shown in Table S1 in Addi-
tional file 1. Additional data on ER status was obtained
through ECRIC from routine pathology and clinical
records. Tissue micro-array data were preferentially
used when ER status as determined by TMA and
obtained from the medical records were discordant
(Table S2 in Additional file 1). The study was approved
by the Eastern Region Multi-centre Research Ethics
Committee, and all patients gave written informed con-
sent. BRCA1 and BRCA2 mutation screening had been
previously carried out in the entire prevalent series of
patients and details are provided elsewhere [4].

Statistical methods
Breast cancer FRRs were estimated from a cohort analy-
sis of the first degree relatives of SEARCH index cases,
as described by Pharoah et al [23]. At risk women
entered the cohort on 1 January 1960 and were cen-
sored on the first of the following events: any cancer
diagnosis, death, the date the family history question-
naire was completed or age 85. Relatives whose dates of
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birth were unknown (6% of relatives) were given a date
based on their relationship to the index case. For exam-
ple, parents were given a date of birth 30 years before
the date of birth of the index case, and sisters were
given the same date of birth as the index case. Relatives
born before 1890 were excluded from the analysis. As
no differences in the age specific FRR between prevalent
(20% of cases) and incident cases was found in the study
of Pharoah et al [23], prevalent and incident cases were
combined in this study. For our purposes, first degree
relatives include only sisters and mothers as very few
cases in daughters were recorded.
The expected numbers of cancers among the first

degree relatives were computed from national age- sex-
and period-specific incidence rates for England and
Wales, as published in Cancer in Five Continents
[24-30]. 1 January 1960 was used as a cut-off for entry
into the cohort because national incidence rates prior to
this date are unreliable. FRRs were computed separately
for each pathological subtype from the ratio of observed
number of breast cancers to the expected number of
breast cancers. Since subtype information was only
available for the index case but not for tumours in their
relatives, these FRRs therefore represent the probability
of developing breast cancer of any subtype given the
relative developed breast cancer of a particular subtype,
compared with the probability of developing breast can-
cer (of any type) in the general population. Subtypes
were defined as luminal (ER and/or PR positive), lumi-
nal HER2-positive, luminal HER2-negative, non-luminal
HER2-positive (ER and PR-negative, HER2-positive), and
TN (ER, PR and HER2-negative). Data were also ana-
lysed by individual marker status and joint expression of
ER and PR. Where sufficient data were available, ana-
lyses were further subdivided by the age at diagnosis of
the index case, or by following up relatives either 1)
from birth up until censoring or age 50, whichever
occurred first or 2) from age 50 to censoring. To
address the dependency between individuals belonging
to the same family, robust standard errors were used to
calculate 95% confidence intervals (CI) and for tests of
statistical significance [31]. All statistical analyses were
carried out in Stata v.10.

Contribution of recently identified susceptibility
loci to FRR
The relative risk to daughters of an affected individual
attributable to a given single nucleotide polymorphism
(SNP) (l*) was calculated using the formula [32]:

*
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Where p is the population frequency of the minor
allele, q = 1 - p, and r1 and r2 are the subtype-specific
genotypic relative risks (estimated as odds ratio (OR))
for heterozygotes and rare homozygotes, relative to
common homozygotes. For these calculations concor-
dance in tumour type between proband and their rela-
tives is assumed.
The proportion of the familial risk attributable to the

SNP was then calculated as log( *)
log( )


0

where l0 is the FRR

for breast cancer (of any type) to first degree relatives of
cancer cases with each subtype, as estimated from our
study. This formula assumes that the SNP of interest and
other susceptibility alleles act multiplicatively on risk.
Estimates of r1 and r2 and minor allele frequency for
populations of European ancestry for each susceptibility
allele were derived from the literature. Only SNPs that
had been genotyped in breast cancer cases from Cauca-
sian populations were included in the analysis.

Contribution of BRCA1 and BRCA2 to the FRR
We have recently extended the Breast and Ovarian Ana-
lysis of Disease Incidence and Carrier Estimation Algo-
rithm (BOADICEA) breast cancer risk prediction
software to incorporate tumour pathology information
([22] and Mavaddat et al. in preparation, 2009). The
contribution of BRCA1 and BRCA2 mutations to the
FRR for breast cancer was estimated as above by model-
ling the FRR due to each of the genes using the
extended BOADICEA algorithm [21,22]. Briefly, the age
specific FRR (FRR(t)) of breast cancer (BC) to daughters
of an individual diagnosed with ER-negative disease was
calculated as the ratio of pedigree likelihoods obtained
from the extended BOADICEA, which is implemented
in the pedigree analysis software MENDEL [21,22]:

FRR(t)
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To calculate an overall FRR, the age-specific FRRs
were averaged over ages 20 to 70 years, weighted by the
age distribution of breast cancer cases in the population.
To obtain the FRR attributable to BRCA1 or BRCA2

mutations separately, we assumed a reduced genetic
model where only the relevant mutation conferred
increased breast cancer risks and no other genetic
effects were assumed in the model. We also estimated
the subtype specific FRR, assuming that concordance in
tumour pathology between the index case and relative
was only due to genotype.
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Results
Reported family history of breast cancer and pathology
of index case tumours
Data from 7,338 breast cancer cases recruited into the
SEARCH study were available for this analysis. These
women reported a total of 14,439 affected and unaf-
fected sisters and mothers. A history of breast cancer in
any first degree female relative was reported in 1,163
(15.9%) cases. Seventy-four women (approximately 1%)
reported two or more affected first degree relatives. ER
status was available in 4,529 (62%), PR status in 2,478
(34%) and HER2 status in 1,896 (26%) of breast tumours
from the index case. After adjusting for age, there was
no significant difference in expression of tumour mar-
kers between prevalent and incident breast cancer cases
(data not shown, all P > 0.05). Pathological information
was missing in a slightly higher proportion of tumours
from younger patients. There was no relationship
between missing marker status and reporting of family
history (data not shown, all P > 0.05). Table 1 shows the
numbers and percentages of index case tumours (among
all those tested) in each phenotypic group by family his-
tory (that is, a reported diagnosis of breast cancer in a
first degree relative). The proportions of cases with and
without family history were similar for each of the
pathological subtypes analysed. Logistic regression ana-
lysis, treating receptor status (positive/negative) as the
outcome variable and family history as the explanatory
variable and adjusting for age at diagnosis revealed no

associations between family history and the receptor sta-
tus of the index case (Table 1).

Familial relative risks by pathological subtype
Table 2 summarises the estimated familial relative risks
by pathological subtype. The relative risk of breast cancer
for first degree relatives of a breast cancer case was esti-
mated to be 1.78 (95% CI: 1.68 to 1.89). The estimated
FRR for breast cancer for relatives of patients with ER-
negative disease was 1.78 (95% CI: 1.44 to 2.11) and for
relatives of patients with ER-positive disease 1.82 (95%
CI: 1.67 to 1.98). For sisters of index cases the FRR was
2.01 (95% CI: 1.81 to 2.21) and for mothers 1.66 (95% CI:
1.53 to 1.79). The risk of breast cancer in sisters of ER-
positive cases was greater than the corresponding risk in
mothers (2.12 vs 1.67) but the statistical evidence for het-
erogeneity was weak (P = 0.08). There was little differ-
ence in the breast cancer FRR for mothers and sisters of
ER-negative disease patients (P = 0.23).
The effect of age at diagnosis of the index patient and

attained age of the relative on FRR for age categories
less than 50 and 50 years and older is shown in Table 3.
The overall FRR declines as both the age at diagnosis of
the index patient and the age of the relative increase,
and this effect is generally observed in both ER-positive
and ER-negative groups (Table 3). The highest FRR was
observed in relatives of ER-negative patients where both
age of diagnosis of relative and age at diagnosis of index
case was less than 50 years old (FRR 3.40 (95% CI: 2.04

Table 1 Index case tumour subtypes and distribution of cases according to reported family history

Phenotype of index
case tumour

Number of
tumours (%)**

Number with
affected relative (%)†

Number without
affected relative (%)‡

Comparison group for
case-only analysis

OR§ 95%CI P-valuee

ER-positive 3659 (81) 599 (82) 3060 (81) ER-negative 1.04 0.85-1.28 0.70

PR-positive 1709 (69) 267 (69) 1442 (69) PR-negative 1.01 0.79-1.27 0.96

HER2-positive 228 (12) 38 (13) 190 (12) HER2-negative 1.15 0.79-1.68 0.78

ER+PR+ 1581 (65) 247 (64) 1334 (65) ER-PR- 1.00 0.75-1.31 0.95

ER-PR+ 110 (4.5) 18 (5) 92 (5)

ER+PR- 261 (11) 43 (11) 218 (11)

ER or PR+ (luminal) 3787 (83) 619 (84) 3168 (83)

ER or PR+ HER2+
(luminal HER2+)

138 (7) 23 (8) 115 (7) luminal HER2- 1.17 0.73-1.88 0.51

ER or PR+ HER2-
(luminal HER2-)

1404 (75) 209 (74) 1195 (75)

ER-PR-HER2+ (non-
luminal HER2+)

76 (5) 11 (4) 65 (5) TN 1.02 0.48-2.16 0.96

ER-PR-HER2- (TN) 218 (13) 30 (12) 188 (13)

ER: estrogen receptor; HER2: human epidermal growth factor receptor; PR: progesterone receptor; TN: triple negative.

* reported diagnosis of breast cancer in a first degree relative

** Number of tumours in phenotypic group as a percentage of those tested for that phenotype

† Number of tumours in phenotypic group with an affected first degree relative as a percentage of cancers with measured phenotype and an affected first
degree relative

‡ Number of tumours in phenotypic group without any affected first degree relative as a percentage of cancers with measured phenotype and without any
affected relative
§OR, 95% CI (confidence intervals) and P-values associated with family history of breast cancer in any first degree relative, adjusting for age at diagnosis of the
index case.
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to 4.75)). The FRR was even higher when the age at
diagnosis of the index case was less than 35 years (FRR
8.26 (95% CI: 3.93 to 17.32)). The breast cancer FRR for
relatives of ER-negative cases was higher than the FRR
for relatives of ER-positive cases for ages of the relative
less than 50 years old (FRR 2.96 (95% CI: 2.04 to 3.87)
and 2.05 (95% CI: 1.70 to 2.40) respectively) but the dif-
ference was not significant (P = 0.07). The FRR for rela-
tives of ER-positive cases was somewhat higher than the
FRR for relatives of ER-negative cases when the age of
the relative was greater than 50 years (FRR 1.76 (95%
CI: 1.59 to 1.93) and 1.41 (95% CI 1.08 to 1.74) respec-
tively) but again the difference was not significant (P =
0.06). These trends are also illustrated in Figure 1,
which shows Nelson-Aalen cumulative hazard curves for
breast cancer in relatives of cases with ER-negative and
ER-positive disease.
The FRR for breast cancer by other pathological sub-

types of tumours in index patients are shown in Table
4. Due to limited data, the analyses were not subdivided
by the age of the index case. The FRR for relatives of
PR-negative disease was higher than the FRR for rela-
tives of PR-positive disease for ages of the relative less
than 50 years old (P = 0.02). The breast cancer FRR for
relatives of HER2-positive cases was higher than for
relatives of HER2-negative cases regardless of the age of
the relative (2.02 (95% CI: 1.34 to 2.69) and 1.69 (95%
CI: 1.46 to 1.92) respectively), but there was little statis-
tical evidence for heterogeneity (P = 0.5). There were
increased FRRs for breast cancer associated with all sub-
types defined by joint ER, PR and HER2 status. There
was no significantly increased FRR for breast cancer in
relatives of patients with TN disease, but the number of
patients with luminal HER2+ (n = 138), non-luminal
HER2+ (n = 76) and TN tumours (n = 218) were too
small to draw definitive conclusions.

Contribution of BRCA1 and BRCA2 mutations to FRR
Of the prevalent breast cancer patients screened for
BRCA1 and BRCA2 mutations 519 had tumour pathol-
ogy information. Among these, one carried a BRCA1
mutation, while six carried BRCA2 mutations. When
these were excluded from the analyses, the estimated
FRR for breast cancer by ER and PR status followed
similar patterns to the overall analysis. For example, in
analyses restricted to relatives followed up to 50 years of
age, the FRR for ER-negative disease before and after
excluding BRCA1 mutation carriers was unchanged
(FRR = 3.5 vs 3.5 for ER-negative and FRR = 2.4 vs 2.4
for ER-positive disease). However, the number of breast
cancer patients with mutation screening and pathology
information was too small to estimate directly the pre-
cise contribution of BRCA1 and BRCA2 mutations to
the FRRs by tumour subtype.
Instead, we estimated the contribution of BRCA1

and BRCA2 mutations to the breast cancer FRR by
tumour subtype by modeling their effects in the risk
prediction algorithm BOADICEA. The contribution of
mutations in BRCA1 to the breast cancer FRR for rela-
tives of ER-negative disease and ER-positive disease
was estimated to be 24% and 1% respectively. The con-
tribution of BRCA2 mutation to the breast cancer FRR
was estimated to be 8.4% for relatives of both ER-posi-
tive and ER-negative patients. The contribution of
mutations in BRCA1 to subtype specific FRR for ER-
negative disease and ER-positive disease was 46% and
0.1% respectively.

Contribution of recently identified susceptibility
loci to FRR
The FRR for ER-positive and ER-negative disease due to
each of the 12 recently identified breast cancer suscept-
ibility loci and their estimated contribution to the FRR
for breast cancer by tumour subtype are shown in Table
5. As expected, most of these SNPs result in larger FRRs
for ER-positive than ER-negative disease. The SNPs
were estimated to account for 1.9% of the breast cancer
FRR in relatives of patients with ER-negative disease and
for 9.6% of the breast cancer FRR in relatives of patients
with ER-positive disease.

Discussion
We estimated breast cancer FRRs for relatives of breast
cancer patients with different tumour subtypes using a
cohort design and data from a population based study
of breast cancer cases in the UK. The most important
classification of breast cancers is that based on ER status
of the tumour. Approximately 20% of the tumours in
our cases were ER-negative and this proportion was
similar whether or not a family member was also
affected by breast cancer. Overall, we found no

Table 2 Familial relative risk for breast cancer by ER
status of the index case tumour

OBS EXP FRR 95%CI

Mothers

All cases 663 398.81 1.66 1.53 - 1.79

ER-negative 84 45.09 1.86 1.46 - 2.27

ER-positive 332 199.36 1.67 1.49 - 1.85

Sisters

All cases 416 207.25 2.01 1.81 - 2.21

ER-negative 37 22.97 1.61 1.05 - 2.17

ER-positive 226 106.81 2.12 1.83 - 2.41

All relatives

All cases 1079 606.06 1.78 1.68 - 1.89

ER-negative 121 68.06 1.78 1.44 - 2.11

ER-positive 558 306.17 1.82 1.67 - 1.98

CI: confidence interval; ER: estrogen receptor; EXP: expected, FRR: familial
relative risk; OBS: observed.
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statistically significant difference in the FRRs for rela-
tives of ER-negative patients and those for relatives of
ER-positive cases. There was a suggestion that the FRR
was higher for relatives of ER-negative cases for ages of
the relative less than 50 years old, but the difference
was not statistically significant (P = 0.07). We also
observed a somewhat higher FRR for ER-positive disease
when the relative was over the age of 50. Analysis of
other tumour markers was consistent with the notion
that FRR at older ages is driven by receptor positive
tumours. There was no substantial familial risk of breast
cancer for older relatives of TN cases.

Our results are consistent with published data, where
for the most part no significant difference between FRR
for breast cancer by ER status, or by joint ER/PR sub-
types has been reported [33-42]. Some studies, for
example Cotterchio et al. [34], reported a trend towards
higher FRR for breast cancer in relatives of cases with
ER PR-negative disease when the index case was
younger. Other, smaller studies have reported a non-sig-
nificantly higher FRR for relatives of cases with ER-posi-
tive disease, in particular when analyses were restricted
to post-menopausal women [35,38,39]. Yang et al
reported an association between family history and basal
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Figure 1 Nelson-Aalen cumulative hazard estimate for breast cancer in relatives of ER-positive and ER-negative cases.

Table 3 Age-specific familial relative risk for breast cancer by ER status of the index case tumour

Age of relative (years) † ER-negative ER-positive All cases

OBS EXP FRR 95%CI OBS EXP FRR 95%CI OBS EXP FRR 95%CI

Index case <50*

<50† 26 7.65 3.40 2.04-4.75 60 22.21 2.70 2.01-3.39 129 50.62 2.55 2.09-3.01

50 to 84 21 14.77 1.42 0.81-2.03 84 50.3 1.67 1.32-2.02 186 113.76 1.64 1.33-1.95

0 to 84 47 22.43 2.10 1.48-2.71 144 72.51 1.99 1.65-2.32 315 164.37 1.92 1.70-2.13

Index case >= 50

<50 22 8.59 2.56 1.31-3.81 75 43.57 1.72 1.33-2.11 160 82.16 1.95 1.63-2.56

50 to 84 52 37.04 1.40 1.01-1.80 339 190.09 1.78 1.59-1.98 604 359.53 1.68 1.54-1.82

0 to 84 74 45.63 1.62 1.22-2.02 414 233.66 1.77 1.59-1.95 764 441.69 1.73 1.60-1.86

Index case any age

<50 48 16.24 2.96 2.04-3.87 135 65.78 2.05 1.70-2.40 289 132.78 2.18 1.92-2.44

50 to 84 73 51.82 1.41 1.08-1.74 423 240.39 1.76 1.59-1.93 790 473.28 1.67 1.54-1.80

0 to 84 121 68.06 1.78 1.44-2.11 558 306.17 1.82 1.67-1.98 1079 606.06 1.78 1.68-1.89

CI: Confidence Interval; ER; estrogen receptor; EXP: expected; FRR: familial relative risk; OBS: observed.

* age at which index is affected

† age of relative (years) <50: relatives were followed up from birth up until censoring or age 50, whichever occurred first, 50 to 84: from age 50 to censoring, 0
to 85: from birth to censoring
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Table 4 Familial relative risk for breast cancer by marker status of index case tumour and age of relative *

Phenotype Age of relative (years)* OBS EXP FRR 95%CI

PR-positive

<50 60 29.46 2.04 1.52 to 2.55

50 to 84 187 102.77 1.82 1.55 to 2.10

0 to 84 247 132.23 1.87 1.63 to 2.11

PR-negative

<50 46 13.39 3.44 2.37 to 4.50

50 to 84 65 46.00 1.41 1.06 to 1.76

0 to 84 111 59.39 1.87 1.55 to 2.24

HER2-positive

<50 11 4.17 2.64 1.08 to 4.20

50 to 84 25 13.70 1.83 1.08 to 2.57

0 to 84 36 17.86 2.02 1.34 to 2.69

HER2-negative

<50 65 28.50 2.28 1.73 to 2.86

50 to 84 154 100.77 1.53 1.28 to 1.77

0 to 84 219 129.27 1.69 1.46 to 1.92

ER+PR+

<50 55 27.20 2.02 1.49 to 2.56

50 to 84 173 95.89 1.80 1.52 to 2.08

0 to 84 228 123.10 1.85 1.60 to 2.10

ER-PR+

<50 5 1.91 2.62 0.33 to 4.91

50 to 84 12 5.74 2.09 0.84 to 3.35

0 to 84 17 7.64 2.22 1.16 to 3.32

ER+PR-

<50 15 4.13 3.63 1.85 to 5.41

50 to 84 24 16.31 1.47 0.88 to 2.06

0 to 84 39 20.44 1.91 1.31 to 2.51

ER or PR+ (luminal)

<50 140 68.04 2.06 1.71 to 2.40

50 to 84 437 247.27 1.77 1.61 to 1.94

0 to 84 577 315.30 1.83 1.68 to 1.98

ER or PR+ HER2+ (luminal HER2+)

<50 6 2.68 2.24 0.48 to 4.00

50 to 84 16 8.35 1.92 0.94 to 2.90

0 to 84 22 11.03 2.00 1.15 to 2.84

ER or PR+ HER2- (luminal HER2-)

<50 53 23.49 2.26 1.65 to 2.87

50 to 84 136 85.67 1.59 1.32 to 1.86

0 to 84 189 109.15 1.73 1.48 to 2.00

ER-PR- (non-luminal)

<50 31 9.17 3.38 2.05 to 4.72

50 to 84 41 29.10 1.41 0.97 to 1.85

0 to 84 72 38.26 1.88 1.41 to 2.35

ER-PR-HER2+ (non-luminal HER2+)

<50 4 1.25 3.20 1.20 to 8.85

50 to 84 6 4.52 1.33 0.35 to 2.29

0 to 84 10 5.77 1.73 0.61 to 2.86
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tumours [43]. We did not have data on basal markers in
this study, but observed little increased FRR associated
with triple negative disease. Our analysis differs from
previous studies in that we were able to analyse the risk
to relatives of breast cancer cases using a cohort
approach. We found that the FRRs decreased by age of
the relative, particularly for ER-negative disease.
Epidemiological studies of family history may be

biased as patients with a family history of cancer may be
more likely to take part or to recall their family history.
Reporting of breast cancer in first degree relatives is
generally considered to be accurate [44], however it is a
shortcoming of this study that reported cancers in rela-
tives could not be independently confirmed. It is unli-
kely that our results are influenced by a differential
reporting bias by index cases harbouring tumours of dif-
ferent pathological subtype. A more important problem
may be the accuracy of pathological data. In our data-
set there is about 10% discordance between ER status
derived from TMA analysis and medical records. How-
ever, separate analyses restricted to TMA data only or
medical records data only yielded similar results (results

not shown). Methodology and sensitivity of immunohis-
tochemical methods, and cut-off points for ER positivity
differ between different laboratories [45]. Some degree
of non-differential misclassification is inevitable and may
have obscured differences in FRR of different pathologi-
cal subtypes. Misclassification may also result because
sub-groupings are approximate and the most biologically
relevant subtypes may have not been delineated.
Environmental risk factors for breast cancer vary by

hormone-receptor status of the tumour. For example,
nulliparity, late age at first birth, BMI, obesity among
postmenopausal women, and early menarche have been
more strongly linked to ER and/or PR-positive than ER-
negative tumours [46,33,34,47,36,39,48,49]. These factors
have been reported not to influence FRR for breast can-
cer [1] and were not included in our analyses. Interest-
ingly, in our study the risk to sisters was slightly higher
than that to mothers and this difference appeared to be
restricted to relatives of breast cancer patients with ER-
positive disease. It was previously suggested that the dif-
ference in risk between sisters and mothers reported in
some studies may be due to a lower rate of breast

Table 5 Estimated FRR for ER-positive and ER-negative disease for recently identified breast cancer susceptibility loci

Locus Ref Genes in/near region Variant MAF ER-negative ER-positive

Hom- GRR Het- GRR FRR* %FRR† Hom- GRR Het- GRR FRR* %FRR‡

10q26 [8] FGFR2 rs2981582 0.38 1.18 1.08 1.0016 0.28 1.74 1.28 1.0186 3.08

16q12 [8] TNRC9/TOX3 rs3803662 0.25 1.28 1.16 1.0036 0.63 1.48 1.25 1.0089 1.48

5q11 [8] MAP3KI rs889312 0.28 1.20 1.03 1.0009 0.16 1.26 1.12 1.0028 0.46

8q24 [8] FAM84B/c-MYC rs13281615 0.40 1.09 0.99 1.0003 0.05 1.29 1.11 1.0038 0.63

11p15 [8] LSP1 rs3817198 0.30 1.13 1.01 1.0004 0.07 1.19 1.04 1.0010 0.17

3p24 [6] NEK10/SLC4A7 rs4973768 0.46 1.12 1.06 1.0008 0.15 1.25 1.12 1.0031 0.52

17q22 [6] COX11 rs6504950 0.27 1.06 1.03 1.0002 0.03 0.88 0.94 1.0008 0.13

10p14 [32] CASP8 (D302H) rs1045485 0.13 0.82 0.95 1.0004 0.07 0.83 0.89 1.0013 0.21

2q35 [62] TNP1/IGFBP5/IGFBP2/TNS1 rs13387042 0.52 1.18 1.05 1.0018 0.31 1.29 1.08 1.0043 0.72

1p11.2 [11] NOTCH2/FCGR1B rs1124933 0.40 1.07 1.03 1.0003 0.05 1.42 1.22 1.0078 1.30

14q24.1 [11] RAD51L1 rs999737 0.24 0.76 1.01 1.0005 0.09 0.69 0.93 1.0024 0.40

5p12 [11] MRPS30/FGFR10 rs10941679 0.26 1.01 1.03 1.0001 0.01 1.18 1.17 1.0027 0.46

Total 1.90 9.56

ER: estrogen receptor; FRR: familial relative risk; GRR: genotypic relative risk; Het-GRR: GRR for heterozygotes (reference group: common homozygotes); Hom-GRR:
GRR for rare homozygotes; MAF: minor allele frequency for populations of European ancestry; Ref: reference for MAF and GRR data.

* FRR due to susceptibility locus

† %FRR due to susceptibility locus- denominator is FRR for breast cancer for relatives of cases with ER-negative disease (1.78)

‡ %FRR due to susceptibility locus- denominator is FRR for breast cancer for relatives of cases with ER-positive disease (1.82)

Table 4: Familial relative risk for breast cancer by marker status of index case tumour and age of relative * (Continued)

ER-PR-HER2- (TN)

<50 9 4.12 2.18 0.77 to 3.59

50 to 84 15 12.55 1.20 0.60 to 1.79

0 to 84 24 16.67 1.44 0.85 to 2.03

CI: confidence interval; ER: estrogen receptor; EXP: expected; FRR: familial relative risk; HER2: human epidermal growth factor receptor 2; PR: progesterone
receptor; OBS: observed; TN: triple negative.

* <50: relatives were followed up from birth up until censoring or age 50, whichever occurred first, 50-84: from age 50 to censoring, 0-85: from birth to censoring
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cancer in mothers, who are by definition, parous [50].
However, temporal effects such as increased detection
due to screening may also be relevant.
We estimated the effect of genetic variants on FRR for

ER-negative and ER-positive breast cancer. The higher
breast cancer FRR for younger relatives of ER-negative
and PR-negative disease may be due to enrichment in
BRCA1 as tumours from BRCA1 mutation carrier status
very often arise in younger individuals and are ER and
PR negative. This effect was still observed when analysis
was restricted to a subset of non mutation carriers.
However, the subset of breast cancer patients with both
mutation screening and tumour pathology information
was small and larger studies will be necessary to address
this directly. In addition, the mutation screening meth-
ods used were not 100% sensitive [51] and some BRCA1
mutation carriers have been included in the analysis.
Using a model based approach we estimated that about
24% of the breast cancer FRR to relatives of cases with
ER-negative disease is due to BRCA1 mutations. BRCA1
and BRCA2 mutations together were estimated to
explain 32% of breast cancer FRR for ER-negative dis-
ease and 9.4% of FRR for ER-positive disease. One lim-
itation of these analyses is that the tumour type is
known only for the index case and not the relative. It is
therefore not possible to estimate the true subtype-spe-
cific FRRs (that is, the FRR that would occur if only that
subtype occurred, in all relatives), or the contribution of
each gene to these FRRs, since the concordance in
pathology between relatives is not known. Assuming, as
in our model, concordance in pathology between rela-
tives is due solely to genotype, BRCA1 mutations
explain about 46% of FRR for ER-negative disease.
Our estimates indicate that the 12 recently identified

common breast cancer susceptibility alleles account for
a larger proportion of the breast cancer FRR in relatives
of patients with ER-positive than ER-negative disease.
SNPs associated with ER-negative disease were esti-
mated to contribute only 1.9% to the overall breast can-
cer FRR for relatives of patients with ER-negative
disease, while SNPs associated with ER-positive disease
were estimated to account for 9.6% of the breast cancer
FRR for relatives of patients with ER-positive disease.
Again, these estimates are approximate since they are
based on the FRR for ER-positive and ER-negative
index cases, but the pathology of the relatives is
unknown (in effect, we assume concordance of the dis-
ease subtype in relatives). Results from studies of bilat-
eral cancer suggest concordance in ER status between
tumours arising against the same genetic background
[52,53]. Future studies to estimate the FRRs using
pathological subtypes in relatives would be worthwhile.
Our calculations also assumed that these genetic var-
iants interact multiplicatively on the risk of developing

the disease. Although this seems a plausible assumption
[54,55], it remains to be tested explicitly for the recently
identified genetic variants. If the true model for the
combined effects was additive, then the contributions to
the subtype specific FRRs would be somewhat lower,
1.4% and 7.0% for ER-negative and ER-positive disease
respectively.
Breast cancer risk is also influenced by rarer variants

that confer moderate breast cancer risks such as ATM
[56], CHEK2 [57], BRIP1 [58] and PALB2 [59]. There
have been suggestions in a small number of studies that
these variants may have stronger associations with ER-
positive [60] or ER-negative [61] disease. It is estimated
that this group of genes together contribute to approxi-
mately 2.3% of the overall familial relative risk.
The residual FRR for breast cancer may be driven by yet

unidentified common variants that have similar patterns
to those that have already been identified, that is more
strongly associated with ER-positive than ER-negative dis-
ease, while GWAS restricted to ER-negative or BRCA1
mutation carriers may identify susceptibility variants asso-
ciated with ER-negative disease. It is also possible that rare
susceptibility variants with effects independent of or speci-
fic to tumour subtypes will be identified.

Conclusions
We may conclude from our results that the FRR for
breast cancer is significantly increased for each patholo-
gical subtype except TN tumours, although the numbers
in the latter category were too small to draw definitive
conclusions. When analyzed by tumour subtype, a sur-
prisingly high proportion of FRR for ER-negative disease
is already explained. We estimate that 32% of breast
cancer FRR for ER-negative disease is explained by
BRCA1 and BRCA2 mutations alone. Patients carrying
such mutations may be advised to undergo prophylactic
therapies such as oophorectomy or mastectomy. About
10% of the FRR for ER-positive disease is explained by
12 newly discovered SNPs, and the contributions of
these SNPs to FRR are likely to be somewhat higher
once the true causal variants are identified. The con-
struction of informative risk prediction models for ER-
positive disease is particularly important as the risk of
ER-positive disease can be reduced by chemoprevention
such as tamoxifen. It is possible that including novel
genetic variants associated with breast cancer suscept-
ibility in models may improve risk prediction for sub-
type specific disease.

Additional file 1: Supplementary tables S1 and S2. Table S1: Details
of antibodies and scoring used for staining of tissue micro-arrays; Table
S2: TMA and Data from the Eastern Cancer Registry and Information
Centre (ECRIR) used for determination of ER status.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/bcr2476-S1.doc ]
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