73 research outputs found

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Motion of Three Vortices near Collapse

    Get PDF
    A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon known as vortex collapse is of principal importance for many-vortex systems. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. Using an effective potential representation, a detailed quantitative analysis of all the different types of near-collapse dynamics is performed when two of the vortices are identical. We discuss time and length scales, emerging in the problem, and their behavior as the initial vortex triangle is approaching to an exact collapse configuration. Different types of critical behaviors, such as logarithmic or power-law divergences are exhibited, which emphasizes the importance of the way the collapse is approached. Period asymptotics for all singular cases are presented as functions of the initial vortices configurations. Special features of passive particle mixing by a near-collapse flows are illustrated numerically.Comment: 45 pages, 22 figures Last version of the paper with all update

    Vortex merger near a topographic slope in a homogeneous rotating fluid

    Get PDF
    This work is a contribution to the PHYSINDIEN research program. It was supported by CNRS-RFBR contract PRC 1069/16-55-150001.The effect of a bottom slope on the merger of two identical Rankine vortices is investigated in a two dimensional, quasi-geostrophic, incompressible fluid. When two cyclones initially lie parallel to the slope, and more than two vortex diameters away from the slope, the critical merger distance is unchanged. When the cyclones are closer to the slope, they can merge at larger distances, but they lose more mass into filaments, thus weakening the efficiency of merger. Several effects account for this: the topographic Rossby wave advects the cyclones, reduces their mutual distance and deforms them. This along shelf wave breaks into filaments and into secondary vortices which shear out the initial cyclones. The global motion of fluid towards the shallow domain and the erosion of the two cyclones are confirmed by the evolution of particles seeded both in the cyclone sand near the topographic slope. The addition of tracer to the flow indicates that diffusion is ballistic at early times. For two anticyclones, merger is also facilitated because one vortex is ejected offshore towards the other, via coupling with a topographic cyclone. Again two anticyclones can merge at large distance but they are eroded in the process. Finally, for taller topographies, the critical merger distance is again increased and the topographic influence can scatter or completely erode one of the two initial cyclones. Conclusions are drawn on possible improvements of the model configuration for an application to the ocean.PostprintPeer reviewe

    On the Formation of Collective Memories: The Role of a Dominant Narrator.

    Get PDF
    To test our hypothesis that conversations can contribute to the formation of collective memory, we asked participants to study stories and to recall them individually (pregroup recollection), then as a group (group recounting), and then once again individually (postgroup recollection). One way that postgroup collective memories can be formed under these circumstances is if unshared pregroup recollections in the group recounting influences others\u27 postgroup recollections. In the present research, we explored (using tests of recall and recognition) whether the presence of a dominant narrator can facilitate the emergence of unshared pregroup recollections in a group recounting and whether this emergence is associated with changes in postgroup recollections. We argue that the formation of a collective memory through conversation is not inevitable but is limited by cognitive factors, such as conditions for social contagion, and by situational factors, such as the presence of a narrator

    Self-sharpening induces jet-like structure in seafloor gravity currents

    Get PDF
    Gravity currents are the primary means by which sediments, solutes and heat are transported across the ocean-floor. Existing theory of gravity current flow employs a statistically-stable model of turbulent diffusion that has been extant since the 1960s. Here we present the first set of detailed spatial data from a gravity current over a rough seafloor that demonstrate that this existing paradigm is not universal. Specifically, in contrast to predictions from turbulent diffusion theory, self-sharpened velocity and concentration profiles and a stable barrier to mixing are observed. Our new observations are explained by statistically-unstable mixing and self-sharpening, by boundary-induced internal gravity waves; as predicted by recent advances in fluid dynamics. Self-sharpening helps explain phenomena such as ultra-long runout of gravity currents and restricted growth of bedforms, and highlights increased geohazard risk to marine infrastructure. These processes likely have broader application, for example to wave-turbulence interaction, and mixing processes in environmental flows
    • …
    corecore