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ABSTRACT

The effect of a bottom slope on the merger of two identical Rankine vortices is in-

vestigated in a two dimensional, quasi-geostrophic, incompressible fluid.

When two cyclones initially lie parallel to the slope, and more than two vortex diame-

ters away from the slope, the critical merger distance is unchanged. When the cyclones

are closer to the slope, they can merge at larger distances, but they lose more mass
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into filaments, thus weakening the efficiency of merger. Several effects account for this:

the topographic Rossby wave advects the cyclones, reduces their mutual distance and

deforms them. This alongshelf wave breaks into filaments and into secondary vortices

which shear out the initial cyclones. The global motion of fluid towards the shallow

domain and the erosion of the two cyclones are confirmed by the evolution of particles

seeded both in the cyclones and near the topographic slope. The addition of tracer to

the flow indicates that diffusion is ballistic at early times.

For two anticyclones, merger is also facilitated because one vortex is ejected offshore

towards the other, via coupling with a topographic cyclone. Again two anticyclones

can merge at large distance but they are eroded in the process.

Finally, for taller topographies, the critical merger distance is again increased and the

topographic influence can scatter or completely erode one of the two initial cyclones.

Conclusions are drawn on possible improvements of the model configuration for an ap-

plication to the ocean.
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1 Introduction

In the oceans, vortices are long-lived features carrying water masses over long distances.

In the course of their evolution, oceanic vortices can merge. Merger has been observed

recently for surface vortices, in several ocean basins : in the Indian Ocean, south of the

Arabian Peninsula (L’Hegaret et al., 2015), in the Atlantic Ocean, in the Bay of Biscay,

and in the Pacific Ocean, near the eastern coast of Australia (see figure 1).

In the Western Arabian Sea, a large anticyclone, the Great Whirl, has been observed

to merge with the nearby Socotra Eddy, along the Somali coast (Vic et al., 2014).

Vortex merger in the ocean also occurs at depth: numerical simulations and in-situ

observations have shown the merger of deep eddies of Mediterranean Water (meddies),

near the Iberian continental shelf, in the Northeastern Atlantic ocean (Schultz-Tokos

et al., 1994; Carton et al., 2010; Aguiar et al., 2013; L’Hegaret et al., 2014).

Therefore vortex merger near a coast is a common process in the ocean.

Vortex merger, in isolation from other effects, has been studied for more than three

decades. It has mostly been investigated in two-dimensional incompressible fluids and

in quasi-geostrophic models (Overman and Zabusky 1982; Dritschel 1985, 1986; Grif-

fiths and Hopfinger 1987; Melander et al. 1987, 1988; Pavia and Cushman-Roisin 1990;

Carnevale et al. 1991; Carton 1992; Bertrand and Carton 1993; Valcke and Verron 1993;

Verron and Valcke 1994, Yasuda 1995; Yasuda and Flierl 1995; Valcke and Verron 1996,

1997; Yasuda and Flierl 1997; von Hardenberg et al. 2000; Sokolovskiy and Verron,

2000; Dritschel 2002; Reinaud and Dritschel 2002; Meunier et al. 2002; Reinaud and

Dritschel 2005; Bambrey et al. 2007; Ozugurlu et al. 2008; Sokolovskiy and Carton,

2010; Sokolovskiy and Verron, 2014). These studies were performed in an unbounded

fluid domain, over flat bottom.

In the two-dimensional case, two identical vortices with uniform vorticity (Rankine vor-

tices) merge only if their initial distance is smaller than 3.3 radii. Vortex merger in

stratified rotating fluids occurs on distances which may depend on stratification.

Much work has also been devoted to the dynamics of a single vortex or of multiple

vortices near a topographic step or slope. In particular, point vortex dynamics was

used (Meleshko, 1994; Roenby and Aref, 2010).
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Figure 1: Sea surface temperature (color), Sea surface height (white lines) and velocity
vectors showing the interaction of two warm anticyclones near the eastern coast of
Australia; from IMOS Ocean Current News
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McDonald (1998) investigated analytically the motion of a point vortex near an es-

carpment in an equivalent barotropic, quasi-geostrophic model. He quantified the flow

across the isobaths and showed that it initially leads to a repulsion of anticyclones

from, and an attraction of cyclones towards the shelf. Then all vortices, whatever their

polarity, drift along the shelfbreak and lose energy to the topographic waves. Vortices

often stabilize at about 1.2 radii of deformation from the shelfbreak, the cyclones lying

on the shelf and the anticyclones in the deep ocean. These theoretical results were

confirmed by contour dynamics model simulations.

Dunn et al. (2001) extended the previous work to weak and medium intensity vortices.

They showed that vortices moving against topographic waves radiate energy and move

towards the shelf while vortices moving with the topographic waves can reach a steady

state. Medium intensity vortices often form dipoles by extracting shelf fluid.

Hinds et al. (2007) showed that an opposite-signed vortex pair is deflected at a given

angle (calculated analytically) by a shallow step, while a deep step scatters the vortex

pair irreversibly.

Sutyrin and Grimshaw (2010) showed that, on a beta-plane, the interaction of a vortex

with a topographic step generates secondary cyclones which can propel the vortex in

a direction opposite to that given by the wall image effect. They determined that the

outcome of this interaction was more sensitive to the vortex intensity and size than to

other parameters.

Zhang et al. (2011) investigated the topographic waves generated by a barotropic point

vortex at a shelfbreak. They studied more particularly the wave-vortex interaction,

depending on the vortex polarity, and the transport of shelf water related to this inter-

action.

Cenedese et al (2013) studied the various interactions of a vortex in the deep ocean with

a shelfbreak current depending on the ratio of vortex to current speed. They quantified

the offshore transport of shelf water under the form of a filament wrapping around the

vortex.

Recently, it has been shown that the interaction of a mesoscale eddy with a continental

slope or a seamount, can generate smaller eddies (called submesoscale eddies; Oey and

Zhang, 2004; Dewar et al., 2011; Molemaker et al., 2015; Vic et al., 2015).

But these studies did not address the effect of a topographic step, or slope, on the

merger of two like-signed vortices, as it occurs in the ocean.
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The aim of this paper is to evaluate the possible merger of two identical vortices

near a topographic slope, in a quasi-two-dimensional, incompressible fluid. The flow dy-

namics is based on the predominance of the planetary rotation over the vortex rotation

(near geostrophic equilibrium). Furthermore, the vortex rotation will also dominate the

topographic vorticity.

Both the critical merger distance and the processes underlying the vortex evolutions

are studied. Several configurations are considered: first, two cyclones are initialized

parallel to a slope. Then the influence of the vortex pair orientation, polarity, or of the

topographic height are successively investigated.

Section 2 presents the model and configurations. Section 3 introduces the vortex in-

teraction with a qualitative analysis. Section 4 focuses on vortex merger near a low

topography. Section 5 is devoted to the influence of the topographic height. Finally

conclusions are drawn in section 6.

2 The model

2.1 Model equations

In the most general case, the barotropic shallow-water, potential vorticity equation gov-

erns the evolution of incompressible, homogeneous fluid flows, with flat upper surface,

and prescribed bottom topography (whatever its height), and with uniform external

rotation:

∂tq + ~u · ~∇q = ν4∇4ω. (1)

where q = (ω + f)/h is potential vorticity, ω = ∂xv − ∂yu is relative vorticity, f is the

Coriolis parameter (twice the external rotation rate) considered constant here f = f0.

h = H − hb(x, y) ≥ 0 is the local fluid thickness. The maximal fluid depth is H and

hb ≥ 0 is the height of topography.

The right-hand side of equation (1) is biharmonic dissipation of vorticity, implemented

numerically to remove vorticity accumulation at small scales.

The numerical hyper viscosity is very weak (see below; ν4 = 10−9).
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The thickness (or continuity) equation is

∂th+ ~∇ · (h~u) = 0.

Here, considering a flat upper surface, ∂th = 0. Therefore hu = −∂yψ and hv = ∂xψ,

where ψ is the transport streamfunction. Then, ω = ~∇ · [(~∇ψ)/h]. Since h and f0 are

prescribed, q is also a function of ψ only.

Equation (1) can be written

∂tω + J(ψ, q) = ν4∇4ω. (2)

where J(f, g) = ∂xf ∂yg − ∂xg ∂yf is the Jacobian operator.

When the elevation of the bottom topography hb is small compared to the total fluid

depth H , and when ω/f0 ≪ 1, equation (2) becomes the quasi-geostrophic potential

vorticity equation

∂tω + J(φ,Q) = ν4∇4ω. (3)

where φ = ψ/H is the streamfunction, ω = ∇2φ and Q = ω − f0hb/H is quasi-

geostrophic potential vorticity.

2.2 Numerical model

Equation (3) for the quasi-geostrophic model is implemented numerically in a square,

biperiodic domain, using a pseudo-spectral technique spatially and a mixed Euler-

Leapfrog scheme temporally. The time step is bounded by the Courant-Friedrich-Levy

condition. The domain length and width are L = 4π (with x, y ∈ [−2π, 2π]). Para-

metric studies are performed with 256 collocation points in the model, while detailed

studies used 512 collocation points. Very weak biharmonic viscosity (ν4 = 10−9) is ap-

plied in the model. This viscosity does not alter the physical results of the model and

only removes small scale noise. By doubling the domain size for the study of distant

vortices, we check that the image effect due to periodicity does not qualitatively alter

the two-vortex evolutions (fine details may change, but not the global evolution).

The initial conditions of this model are a pair of identical, circular vortices of radius
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R = 0.5, enclosing uniform quasi-geostrophic relative vorticity ∇2φ = 1, and lying

initially at a distance d from each other, and at a distance dc from the topography (see

figure 2b). Elsewhere, ∇2φ = 0.

For an application to the ocean, we consider vortices in the Arabian Sea; they have a

peak velocity V ∼ 0.4 m/s at a radius R ∼ 30 km. Therefore, length and time are

scaled between the model and the ocean via L = 6 104 m and T = 4 104 s. An estimate

of ω is 2V/R = 2.7 10−5 s−1. In the Arabian Sea, f0 = 5.4 10−5 s−1, so that ω/f0 = 0.5.

The Rossby number is therefore Ro = 0.25.

In the model, the dimensionless value of the Coriolis parameter is f0 = 2, which scales

the topographic vorticity f0hb/H in equation (3).

The bathymetry is a smooth slope, with a deep domain at the center (near y = 0), and

shallow domains both north and south (for positive and negative y):

hb(y) = hb0 [1.0 + 0.5 tanh((y − yt)/Lt)− 0.5 tanh((y + yt)/Lt)]

We have hb0 = 0.2H for most of this study (section 4). Finally, in the model, we set

H = 1.0.

Numerically, the choice of topographic parameters is, for anticyclones, yt = 5.0, Lt = 0.5

(since anticyclones move away from the slope into the deep region), and for cyclones,

yt = 2.5, Lt = 0.5 (since cyclones move in the opposite direction).

To track fluid masses, a few (discrete) particles are seeded in various parts of the

domain initially (with tags indicating their origin). Their advection illustrate the vortex

trajectories. They also show how the periphery of a vortex can be eroded during the

two-vortex interactions.

A passive tracer, with continuous distribution, is used to evaluate the mixing of shallow

and deep fluid masses. This tracer is initialized as a smooth front over the topography.

T (x, y, t = 0) = T0 [tanh((y − yt)/Lt)− tanh((y + yt)/Lt)]− Tavg

with T0 = 1. The model being biperiodic (and using Fourier transforms spatially),

substracts the spatial average from all calculated fields, hence the term −Tavg in the

equation above.
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3 Vortex interaction near a topographic slope : qual-

itative analysis

In this section, we present a qualitative analysis of the interaction of a vortex with the

slope topography, based on the conservation of vorticity and on the associated motion

of the vortex patches.

A single cyclone, close to a southern topographic step (or slope), extracts fluid from

the shelf (shallow region), and advects it to its east; this fluid thus gains positive rela-

tive vorticity, see figure 2a. The cyclone pushes fluid shoreward to its west, producing

a negative vorticity anomaly there, see figure 2a (left). This double vorticity anomaly

(called secondary vorticity poles) advects the cyclone shoreward (southeastward).

These secondary vorticity poles result from with the development of a topographic

Rossby wave, propagating eastward along a southern step/slope. This wave both ad-

vects and deforms any neighboring vortex. As a first approach to this mutual influence,

a simple model featuring the interaction of two point-vortices and a topographic vor-

ticity front, is presented in appendix 1.

For two cyclones, such vortex motion and deformation must be combined with the

co-rotation, or inward spiraling motion, of the vortex pair itself.

Therefore, a cyclone pair starts co-rotating and drifting towards the step. This, in

turn, triggers topographic Rossby waves along the step. These waves may advect the

two vortices closer to each other and thus may favor merger. But also, the velocity

shear associated with these waves can elongate the two vortices and fragment them.

This splitting process can compete with the merger of the vortices, and thus weaken

its efficiency1. We need to determine numerically which of these two effects prevails.

This depends on the velocity and velocity shear induced on any primary vortex, by the

other primary vortex and by the secondary vortices.

For anticyclones, the situation is different :

A single anticyclone is advected offshore (northwestward), by the secondary vorticity

poles, when initially located near a southern topographic step, see figure 2a (right).

1Efficiency is the ratio of final (after merger) to initial circulation of the vortices
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Figure 2: (a) left: interaction (viewed from the top) of a single cyclone with a topo-
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Two anticyclones start rotating in the clockwise direction; the easternmost anticyclone

becomes the closest to the step and hence feels the influence of the cyclonic topographic

vorticity. This topographic vorticity pole can couple with this anticyclone as a dipole.

This dipole can drift offshore, towards the other anticyclone. Then, the two anticyclones

can merge.

Thus, qualitatively, the merging process may be favored by a topographic step, for

anticyclones.

Again, this has to be studied numerically to obtain quantitative results.

4 Numerical simulations of the evolution of a vortex

pair

In this section, we consider the motion of two vortices near a topographic slope with

f0hb0/H = 0.4, compared to the unit vortex vorticity ω = ∇2φ = 1.

4.1 Regime diagram for a cyclone pair initially parallel to the

slope

Figure 3 shows the various nonlinear regimes for the interaction of two cyclones near a

southern step, obtained by analysing the outcome of our numerical simulations.

When the two cyclones are distant from the step (dc/R = 5), the topographic effect is

negligible and the critical merger distance lies between d/R = 3.2 and d/R = 3.4, as it

is well known for two Rankine vortices, in the absence of other effects.

As the vortices are initially located closer to the step, the merging process becomes

more asymmetric and less efficient; the final vortex does not gather all the mass of

the initial two vortices. Indeed, the easternmost cyclone rotates in the anticlockwise

direction (away from the step) and is thus less affected by topographic Rossby waves.

The westernmost cyclone is advected towards the step, into the shallower region, and is

elongated. A large part of it is absorbed (via merger) in the easternmost cyclone. The

remainder is cast away as filaments and progressively scattered and dissipated. The

elongation of the westernmost cyclone explains why it can interact more easily with its

partner, and thus why the critical merger distance increases, as dc/R decreases. The
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vortex filamentation over topography explains why the merging efficiency decreases,

compared with merger over flat bottom.

For small dc/R, the vortex deformation is so intense and rapid that the merging process

most often cannot take place. The outcome in such a situation is often separation, drift

and shearing out of the vortices in the shallower region. Therefore, the critical merger

distance decreases then to about d/R = 3.2.

Finally, it must be mentioned that vorticity remains mostly confined near the step or

in the shallow region. Therefore, the fluid exchange is mostly confined there.

To sum up, two cyclones near a step undergo merger more easily as they are closer to

the step, but this process becomes less efficient. But two cyclones very close to the step

are separated and do not merge.

4.2 Analysis of two nonlinear regimes

4.2.1 Evolution of vorticity and of deformation

We study in more detail two nonlinear regimes associated with the presence of bottom

topography. The simulations are run with 512 nodes in each direction.

Firstly, we present the case dc/R = 2, d/R = 3.2 for which asymmetric merger

occurs, followed by the deformation of the vortices.

Figure 4 shows the time evolution of relative vorticity.

The two cyclones lie initially at the bottom of the topographic slope (figure 4a).

Their co-rotation rapidly brings the (initially) westernmost one over the slope (figure

4b). This cyclone is strongly elongated and then sheds filaments (figure 4c). Therefore,

only a part of it is absorbed into the (initially) easternmost cyclone (figure 4d). The

total circulation of the merged vortex is about 75% of the sum of the two initial cir-

culations, while the negative (topographic) circulation amounts to about 35% of this

sum.

At a much later time, even this latter cyclone is strongly deformed by the shear induced

by the topographic vortices (figure 4e). It splits and the final circulation is then only

35% of the total initial circulation.
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Figure 4: Time evolution of vorticity maps for two cyclone interaction with normalized
initial distance to the shelf dc/R = 2, and initial distance between vortices d/R = 3.2.
Times shown are t = 0, 6, 12, 18, 60 (subplots a, b, c, d, e). We remind that the vortex
turn-over time τ is 4π. The horizontal black lines are isobaths (indicating the bottom
slope), and the color scale characterizes the intensity of the relative vorticity.14
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Figure 5: Deformation map for two cyclone interaction with dc/R = 2, d/R = 3.2.
Time shown is t = 18 and τ = 4π is the vortex turn-over time. The horizontal black
lines are isobaths (indicating the bottom slope), and the color scale characterizes the
intensity of the rate of deformation.
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16



Figure 5 shows the rate of deformation σ of the two cyclones over the topographic

slope. This rate is defined by

σ2 = σ2

1
+ σ2

2
, σ1 = ∂xu− ∂yv, σ2 = ∂xv + ∂yu

Clearly, deformation is strong at the edges and tip of the vortices, where filaments are

produced.

The generation of topographic Rossby waves is analyzed at the early stage of this

simulation, via a Fourier transform of the vorticity field, over the upper and lower parts

of the slope (i.e. for yt+Lt < y < yt and for yt < y < yt+Lt, figure 6). Over the lower

slope, waves with all wavenumbers from k = 1 to k = 6 grow from the start. This corre-

sponds to the contribution of the wave and of the vortex pair, which produces filaments

and small-scale features. On the upper half, only the wave is present at early times.

Then long waves dominate. Indeed, the Fourier transform of the vorticity interface

deviation for two point vortices and a topographic front, has an amplitude proportional

to exp(−kdc) (see appendix 1). Therefore, shorter waves have smaller amplitude.

The effect of these waves on the two vortices are as follows:

- the fluid climbing on the slope acquires negative relative vorticity and conversely for

the fluid descending from the shallow region ;

- they accelerate the westernmost cyclone towards the shallow region and elongate it;

they slow down the rotation (and offshore motion) of the easternmost cyclone;

- this influence induces a decrease in the distance between the two initial cyclones, fa-

voring their merger.

Again, this explains why two cyclones can merge at larger distance than in the absence

of topography, but one cyclone being strained, merger becomes asymmetric and less

efficient.

Secondly, we present the case dc/R = 1, d/R = 3.8 for which the vortices do not

merge, but only filament.

The two cyclones lie initially at the bottom of the topographic slope. The time series
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Figure 7: Time evolution of vorticity maps for two cyclone interaction with dc/R = 1,
d/R = 3.8. Times shown are t = 0, 15, 30, 45, 60 (subplots a,b,c,d,e). We remind that
the vortex turn-over time τ is 4π. The horizontal black lines are isobaths (indicating the
bottom slope), and the color scale characterizes the intensity of the relative vorticity.18
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Figure 8: Deformation map for two cyclone interaction with dc/R = 1, d/R = 3.8.
Time shown is t = 45 and τ = 4π is the vortex turn-over time. The horizontal black
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of vorticity maps (figure 7) indicates that the westernmost cyclone climbs onto the shelf

and filaments at its northern tip, while the easternmost cyclone climbs onto the slope,

essentially advected by the topographic wave (which circles around the vortex). Then,

the two cyclones lie on the shelf where they interact but do not merge, and finally the

westernmost cyclone totally filaments. This strong deformation concentrated on the

western cyclone clearly appears in figure 8.

Over the upper slope, the topographic wave analysis (figure not shown) indicates

that all wavelengths grow initially, but the long waves dominate at longer time. Over

the lower part of the slope, the wave amplitudes decrease because the vorticity field

initially encompasses the two cyclones which finally drift southward and lie over the

shelf.

4.2.2 Particle trajectories

In the case dc/R = 2, d/R = 3.2, a few discrete passive particles are seeded in the

domain (see figure 9). The evolution of the two cyclones in this case, is partial and

asymmetric merger, followed by drift and shearing and straining.

The aim of particle tracking here, is not to perform statistical studies of dispersion,

but to follow the vortices, and to illustrate the vortex deformation or erosion. That is

why a single particle is seeded at each vortex center initially; it helps follow each vortex

through time.

Particles are also seeded initially along two circles in the western vortex. The circles

have radii 0.4R (5 particles along this circle), and 0.8R (with 8 particles). The aim of

these ”inner and outer rings of particles” is to confirm how eroded the vortex becomes,

with time. The peripheral particles, if torn away from the vortex, indicate that the

peripheral layers of the vortex are stripped off.

Particles are seeded at the bottom and at the top of the topographic slope to show the

cross-slope transfers of fluid.

The trajectory of the central particles (particles initially at each vortex center) is

shown in figure 10a. Both particles drift upslope and eastward via the interaction of

each vortex with the topographic wave; over the slope, the particles are close to each

other. Over the shallower part of the domain, the loops in these particle trajectories
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indicate the tumbling of the two vortices during their interaction. Finally the two parti-

cles lie at a distance comparable to their initial separation. This is due to the straining

out of the two vortices in the second part of their evolution. The particle from the

easternmost vortex lies in the final vortex, while the particle from the westernmost

vortex lies out of this final vortex, to the Northwest.

Secondly, the evolution of rings of particles is studied. Figure 10b indicates that,

over the upper slope, the outer ring of particles diverges from the central particle. The

deformation reaches the vortex core shortly after. Then the two rings of particles have

- on average - similar trajectories. Only late in the evolution, do the trajectories of the

outer and inner ring centroids slowly diverge.

The (root-mean squared) average distance of the rings of particles from their centroids

is then plotted versus time (figure 10c). It provides a qualitative illustration of the

vortex evolution. Deformation increases as the westernmost cyclone crosses the slope

uphill (between t = 10 and t = 20). This leads to the filamentation of this vortex,

once in the shallow domain. The filament thus created is elongated while advected

in the clockwise direction by the merged vortex. This advection pushes the filament

downslope. This corresponds to the second increase in particle dispersion (between

t = 35 and t = 45). The tip of this filament rolls up as a small vortex over the lower

slope; then this small vortex moves upslope, is elongated and finally moves downslope.

Simultaneously, the merged vortex is elongated and splits over the upper slope. These

two effects correspond to the last increase in particle dispersion (t = 60− 80).

In figure 10d, the particle centroids are shown starting from the top of the slope.

Both the particles east and west of the cyclones loop and move into the shallow region.

Particles seeded at the bottom of the slope climb upslope, confirming the previous re-

sults and conclusions (see figure 10e).

For the case dc/R = 1, d/R = 3.8, particles are seeded similarly in the domain.

The particles initially at the vortex centers drift upslope and follow parallel trajectories

before diverging; they do not come close together (figure not shown). Similarly, all

particles in the western vortex follow comparable trajectories. Only the outer particles

slowly diverge in the final stage of the simulation.

23



a)

Tracer field over topography

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6
y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

b)

Tracer field over topography

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

c)

Tracer field over topography

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

d)

Tracer field over topography

-6 -4 -2 0 2 4 6

x

-6

-4

-2

0

2

4

6

y

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 11: Evolution of maps of tracer field with time; a) t = 0, b) t = 18, c) t = 39, d)
t = 60 (subplots a,b,c,d). The horizontal black lines are isobaths (indicating the bottom
slope), and the color scale characterizes the intensity of the tracer concentration.

4.2.3 Passive tracer evolution

To investigate further the cross-slope exchange, we add a passive tracer to the flow.

This initial tracer distribution is continuous spatially, and is specified in section 2. It

is higher in the shallow region and lower in the deep region.

We present the horizontal maps of tracer in the case d/R = 3.2, dc/R = 2 in figure

11.

The tracer field is rapidly advected into the shallow region, and deformed by the two-

vortex flow; it is also advected into the deep region. The tracer gradients substantially

increase. The tracer isolines correspond to the vorticity isolines and in particular those

of the filaments; this can be seen in the final map of tracer and of vorticity, see figure
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Figure 12: Early time evolution of the tracer diffusivity, (a) at the upper slope, averaged
between yt + Lt/2 and yt + Lt; (b) at the lower slope and over flat bottom, averaged
between yt −Lt and y = 0. The frontogenetic tendency is plotted in (c) at t = 39. The
black lines are isobaths (indicating the bottom slope), and the color scale characterizes
the intensity of the frontogenetic tendency.
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11d.

The diffusivity, computed as indicated in appendix 2, shows a linear increase (”ballistic

regime”) for early times, over the upper slope, see figure 12a. At the lower slope, and

near the center of the domain, diffusion increases linearly at short times, then decreases

and becomes weaker, see figure 12b.

In the ocean, the corresponding diffusivities would be Ktop = 4050 m2/s and Kbot =

765 m2/s. The first value is characteristic of a turbulent horizontal mixing process in

the western boundary currents (this diffusivity is called ”suppressed eddy diffusivity” by

Klocker and Abernathey, 2014); on the contrary, the latter value is more characteristic

of horizontal diffusivity in the center of a mid-latitude gyre.

The frontogenetic tendency (see appendix 3 and figure 12c) confirms the rapid increase

of the tracer gradients in the vicinity of the vortex pair at the upper slope.

4.3 Influence of the orientation of the vortex pair

When the two cyclones initially lie perpendicularly to the slope, the vortex closest to

the slope is advected to the southeast by the topographic wave and by the secondary

poles. The distance between the two primary vortices then increases to the point that

no merger occurs (see figure 13). Therefore, the initial orientation of the vortices has a

major effect on the outcome of their interaction.

4.4 Influence of the vortex polarity: evolution of two anticy-

clones

We now focus on the interaction between two anticyclones, near a topographic slope.

Figure 14 presents the nonlinear regime distribution in the (d/R, dc/R) plane.

Clearly, merger occurs much more easily than over flat bottom:

- symmetric merger has a critical distance d = 3.3R when the vortices lie at 6 radii

from the slope, but this distance increases to d = 3.9R at 5 radii from the slope.

- asymmetric merger occurs for two anticyclones lying between 2 and 4 radii away from

the slope; in this case, the critical merger distance is beyond 6R. Only when the two

anticyclones are very close to the slope, does the topographic wave separate them even

if they lie close to each other initially (d/R = 3.2).
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Figure 13: Nonlinear regimes of two cyclones when they lie initially perpendicularly to
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Figure 15: Time series of vorticity maps for the evolution of two anticyclones, initially
parallel to the slope, with f0hb0/H = 0.4, and d/R = 4, dc/R = 3. Times shown are
t = 0, 18, 36, 54 (subplots a, b,c,d). The black lines are isobaths (indicating the bottom
slope), and the color scale characterizes the intensity of the relative vorticity.

The mechanism favoring merger is the formation of a positive (secondary) vorticity

pole, which detaches from the slope into the deep domain and couples with the an-

ticyclone closest to the slope (see figure 15a for the case d/R = 4, dc/R = 3). This

dipole propagates northwestward and hits the second anticyclone (see figure 15b), thus

achieving merger from large distances. In the last stage, peripheral cyclones, generated

by the roll-up of filaments, lie around the merged vortex.

The topographic waves generated on the slope are analyzed during the early evo-

lution of the flow, and their modal decomposition is shown. At the upper slope, only

the distant flow field of the vortices is felt and the longest wave dominates (figure 16a).

At the lower slope, the vortex flow influences the modal contents and a shorter wave

(k = 2) is also noticeable (figure 16b). The fact that shorter waves are weaker during

the interaction of two anticyclones (compared to that for two cyclones), is due to the
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Figure 16: Time series of topographic wave amplitude for the various zonal modes from
k = 1 to k = 6 at the upper slope (a) and at the lower slope (b), for the interaction of
two anticyclones.

drift of the two anticyclones away from the slope. The farther away from the slope the

vortices are, the more dominant long waves become in the topographic wave.

Finally, we studied the tracer evolution in this case. The diffusivity also follows a

linear increase (”ballistic regime”) at early times (see figure 17), but rapidly stabilizes

at the upper slope.

In the ocean, the corresponding diffusivities would be Ktop = 540 m2/s and Kbot =

580 m2/s, characteristic of weak diffusion. The diffusivity is weaker here than for two

cyclones, because the anticyclones drift away from the shallow region; only one patch of

positive vorticity is extracted from this shallow region. The secondary poles of vorticity

(filaments) then evolve in a region of uniform tracer concentration, away from the slope.

To sum up, the interaction of two anticyclones near the topographic slope facilitates

their merger, but leads to vortex filamentation which reduces the merger efficiency.

5 Influence of step height

Here we set the topographic vorticity to f0hb0/H = 0.8.

Several differences with the case of shallower bathymetry, are observed (see figure 18):

1) For cyclones, merger occurs for larger initial distances over the taller topography,

but the efficiency of the merging process is reduced; more filamentation occurs on the

slope, often leading to the complete destruction of the westernmost vortex, or of both
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Figure 17: Early time evolution of the tracer diffusivity, (a) at the upper slope; (b) at
the lower slope, for the interaction of two anticyclones.

vortices.

2) In that respect, for cyclones close to the slope (but not on the slope), the critical

merger distance increases to d/R = 5.3 instead of d/R = 4.4.

3) For anticyclones, which drift away from the slope, merger is favored by the topo-

graphic effect, for the range of topographic heights considered here : a topographic

(secondary) cyclone pairs with the easternmost (primary) anticyclone and advects it

towards the other anticyclone.

4) For dc ∼ 2 R, the critical merger distance is larger than for the shallower topography.

5) Only when the two anticyclones lie very near the slope, do they merge more easily

when topography is tall. This is related to the stronger dipolar effect favoring this

merger.

To quantify the stronger shearing effect of tall topographies, a simple model is

proposed in appendix 4.

6 Conclusions

To start investigating vortex interaction near a continental slope in the ocean, we have

used a very simple model and configuration. They have limitations, which will be listed

below. Nonetheless, they provided interesting information on the possible merger of

two like-signed vortices near a topographic step (or slope):
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- two cyclones merge more easily near a topographic slope but the merging efficiency is

reduced due to filamentation and wave dispersion; the critical distance for merger can

then substantially increase (to more that 5.5 radii).

- long topographic waves grow first on the slope, followed by shorter modal components

(which are stronger close to the vortices) ;

- a simple model is derived to anticipate these effects in the long range limit (linear

approximation);

- both the topographic wave and the secondary vortices tend to erode cyclones climbing

upslope, favoring diffusion of tracer.

- As a qualitative illustration of these processes and evolutions, particles seeded in the

cyclone cores also indicates the progressive erosion of the cyclones as they climb ups-

lope; particles, seeded at the upper and lower slope, follow the global upward motion.

- Tracer diffusion confirms this tendency for cyclones and diffusivities were calculated,

showing a ballistic regime initially. Diffusivity is larger in the shallow region and during

the interaction of two cyclones, close to the slope (and close to the tracer gradient). This

is due to the strong shearing and straining effects of the secondary vorticity patches.

This effect is less important for two anticyclones, which drift away from the slope into

the deep, open domain: the intensity and spatial concentration of secondary vorticity

is then weaker and it is located in a region of uniform tracer concentration.

- The initial orientation of the two vortices with respect to the slope is important: if

the two cyclones lie initially perpendicularly to the slope, they are separated and do

not merge.

- On the contrary, two anticyclones easily merge near a topographic slope, because one

is ejected towards the other via coupling with secondary (topographic) vortices.

- In many instances, both for cyclones and for anticyclones, vortex merger is favored,

the critical merger distance is increased, but the efficiency of the merging process is

reduced.

- Finally, for taller topographies, the critical merger distance is again increased and

merger efficiency decreased; the slope can scatter or erode completely one vortex; anti-

cyclone merger near the shelf is possible.

For application to the ocean, this study should be extended to very tall topographies

using first the homogeneous shallow-water model. Then, two cases can occur: either
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the shelf is wide and the present study is a starting point, or the shelf is very narrow,

and vortex merger near a vertical wall is a preferable starting point.

In both cases, to attain realism for oceanic situation, the model should include more

dynamical elements: density stratification, a variable Coriolis parameter (planetary

beta effect), and possibly more complex topography (canyons, seamounts) and local

currents. Preliminary simulations of two anticyclones near a coast, on the beta plane,

indicate that they merge without drifting offshore, being maintained against the coast

by beta effect. This merger forms a vortex not larger than any of the initial two, since

Rossby waves disperse energy during the process. The addition of a coastal current

to this configuration was also tested; when the vortices interact with this current, a

saddle point is can be created which is critical for cross-shore fluid transfer (Capet and

Carton, 2004; Vandermeirsch et al., 2003).

As a first step towards realism, this study will be generalized to a stratified fluid in

a forthcoming paper.
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Appendix 1 : point vortex pair, topographic vorticity front in-

teraction

Here, we compute the effect of two point vortices on a topographic vorticity front in

the long distance limit. We assume here that the topography is a step with a vorticity

jump δq = −f0hb0/H northward. The configuration is the same as in figure 9, but now,

the two vortices have zero radius and finite circulation Γ. It is also assumed that their

mutual distance d is very small compared with their distance dc to the topographic

slope, thus justifying the long distance limit.

In that respect, we can use a dipolar expansion of the streamfunction induced by the
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point dipole and truncate it at lowest order, or, similarly, apply the Gauss theorem to

the vorticity distribution. Thus, the far field of the streamfunction, at the topographic

step, is

ψ(x, y = 0) =
Γ

2π
Log[x2 + d2c ]

We can now follow the theory of vortex - potential vorticity front interaction developed

in Stern and Flierl (1987), in the particular case where there is no basic zonal flow.

Using the linear theory (for large distances between the point dipole and the front), the

potential vorticity interface deviation from its initial position y = 0 is

η(x) =
Γdc

πδq(x2 + d2c)

(one can note that, in fact, the interface would be initially at y = −yt in the numerical

model.)

Again, as in the case dealt with by Stern and Flierl (1987), the meander has a circulation

equal and opposite to that of the point dipole; the meridional velocity at y = 0 is

v(x) =
Γx

2π(x2 + d2c)

The Fourier transform of the interface deviation η is Γdcexp(−kdc)/(δq).

Appendix 2 : Diffusive evolution of a tracer from an initial front

Our objective here is to provide a simple estimate of the diffusivity of a continuous

tracer across the topographic slope. To do so, we start from the 2D diffusion equation

∂tT = K [∂2x + ∂2y ]T, (x, y) ∈ [−L/2, L/2]× [−L/2, L/2], t > 0

where T (x, y, t) is the tracer concentration. We integrate this equation between two

isolines of y (e.g. the upper and lower boundaries of the topographic slope) and over

the length of the domain in x. We use the periodicity of the domain to eliminate the
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integrated term [∂xT ]
L/2
−L/2 and we obtain:

d

dt

∫ L

0

dx

∫ y2

y1

Tdy = K

∫ L

0

dx [∂yT ]
y2
y1

This equation is the budget of tracer in the region thus determined. By calculating the

time derivative in the left-hand side, and the integral in the right-hand side, we obtain

the diffusivity K.

Appendix 3: the frontogenetic tendency

Consider a passive tracer T , conserved during its advection by the flow

dT

dt
= ∂tT + J(φ, T ) = 0

Then, the gradient of the tracer obeys the equation

d~∇T
dt

= − ~∇~u · ~∇T

and its norm varies as
d|~∇T |2
dt

= − (~∇T )T ~∇~u · ~∇T

The right hand side of this equation is called the frontogenetic tendency and is written

F (u, v, T ) = −[∂xu(∂xT )
2 + (∂xv + ∂yu)∂xT∂yT + ∂yv(∂yT )

2]

It indicates where the tracer gradients increase or decrease.

Appendix 4: Shearing and dispersive effects of topography

Using the theory above (appendix 1), we know that (in the linear regime) the sec-

ondary vortices, which result from the occlusion of the topographic wave meanders,

have about the same circulation Γ = πR2ω as the primary vortices. If they lie on both
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sides of the slope, the maximum shear that they create is dU
dy

= Γ

2π×4L2
t

.

It is also known that, if (dU/dy) /ω > 0.15, the primary vortices will be sheared out

(McWilliams, 1991). In the present case, this ratio is 0.125 which explains the substan-

tial shearing out of the cyclone pairs near the slope (for dc ≤ 4R).

The topographic beta effect is βT = f0
H

dhb

dx
. It acts on the primary vortices which

have maximal azimuthal velocity Vm = ωR/2. The Rhines scale separating the vortical

and wave regimes is LR =
√

Vm/βT .

For the shallowest topography, LR = R and for the tallest, LR = R/
√
2. Since the

Rhines scale is comparable with, or smaller than, the vortex radius, topography has a

strong dispersive effect on cyclones as they move upslope.
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