73 research outputs found
Recommended from our members
Maternal pre-pregnancy body mass index and newborn telomere length
Background: Newborn telomere length sets telomere length for later life. At birth, telomere length is highly variable among newborns and the environmental factors during in utero life for this observation remain largely unidentified. Obesity during pregnancy might reflect an adverse nutritional status affecting pregnancy and offspring outcomes, but the association of maternal pre-pregnancy body mass index (BMI) with newborn telomere length, as a mechanism of maternal obesity, on the next generation has not been addressed. Methods: Average relative telomere lengths were measured in cord blood (n = 743) and placental tissue (n = 702) samples using a quantitative real-time PCR method from newborns from the ENVIRONAGE birth cohort in Belgium. By using univariate and multivariable adjusted linear regression models we addressed the associations between pre-pregnancy BMI and cord blood and placental telomere lengths. Results: Maternal age was 29.1 years (range, 17–44) and mean (SD) pre-pregnancy BMI was 24.1 (4.1) kg/m2. Decline in newborn telomere length occurred in parallel with higher maternal pre-pregnancy BMI. Independent of maternal and paternal age at birth, maternal education, gestational age, newborn gender, ethnicity, birthweight, maternal smoking status, parity, cesarean section, and pregnancy complications, each kg/m2 increase in pre-pregnancy BMI was associated with a −0.50 % (95 % CI, −0.83 to −0.17 %; P = 0.003) shorter cord blood telomere length and a −0.66 % (95 % CI, −1.06 to −0.25 %; P = 0.002) shorter placental telomere length. Conclusions: Maternal pre-pregnancy BMI is associated with shorter newborn telomere lengths as reflected by cord blood and placental telomeres. These findings support the benefits of a pre-pregnancy healthy weight for promoting molecular longevity from early life onwards. Electronic supplementary material The online version of this article (doi:10.1186/s12916-016-0689-0) contains supplementary material, which is available to authorized users
Telomere tracking from birth to adulthood and residential traffic exposure
Background: Telomere attrition is extremely rapid during the first years of life, while lifestyle during adulthood exerts a minor impact. This suggests that early life is an important period in the determination of telomere length. We investigated the importance of the early-life environment on both telomere tracking and adult telomere length.
Methods: Among 184 twins of the East Flanders Prospective Twin Survey, telomere length in placental tissue and in buccal cells in young adulthood was measured. Residential addresses at birth and in young adulthood were geocoded and residential traffic and greenness exposure was determined.
Results: We investigated individual telomere tracking from birth over a 20 year period (mean age (SD), 22.6 (3.1) years) in association with residential exposure to traffic and greenness. Telomere length in placental tissue and in buccal cells in young adulthood correlated positively (r = 0.31, P < 0.0001). Persons with higher placental telomere length at birth were more likely to have a stronger downward shift in telomere ranking over life (P < 0.0001). Maternal residential traffic exposure correlated inversely with telomere length at birth. Independent of birth placental telomere length, telomere ranking between birth and young adulthood was negatively and significantly associated with residential traffic exposure at the birth address, while traffic exposure at the residential address at adult age was not associated with telomere length.
Conclusions: Longitudinal evidence of telomere length tracking from birth to adulthood shows inverse associations of residential traffic exposure in association with telomere length at birth as well as accelerated telomere shortening in the first two decades of life
Telomere length in early childhood and its association with attention: a study in 4–6 year old children
Telomere length (TL), a marker of cellular aging, has been studied in adults with regard to its connection to cognitive function. However, little is known about the association between TL and cognitive development in children. This study investigated the interplay between TL and cognitive functioning in 283 Belgian children aged four to six years of the Environmental Influence on Aging in Early Life (ENVIRONAGE) birth cohort. Child leukocyte TL was measured using qPCR, while cognitive functioning, including attention and memory, was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear regression models were employed to examine the association between TL and cognitive outcomes, adjusting for potential confounders. We found an inverse association between TL and the spatial errors made during the Motor Screening task (p = 0.017), indicating a higher motor accuracy in children with longer telomeres. No significant associations were found between TL and other cognitive outcomes. Our results suggest a specific link between TL and motor accuracy but not with the other cognitive domains
Prenatal Air Pollution and Newborns' Predisposition to Accelerated Biological Aging.
Importance: Telomere length is a marker of biological aging that may provide a cellular memory of exposures to oxidative stress and inflammation. Telomere length at birth has been related to life expectancy. An association between prenatal air pollution exposure and telomere length at birth could provide new insights in the environmental influence on molecular longevity. Objective: To assess the association of prenatal exposure to particulate matter (PM) with newborn telomere length as reflected by cord blood and placental telomere length. Design, Setting, and Participants: In a prospective birth cohort (ENVIRONAGE [Environmental Influence on Ageing in Early Life]), a total of 730 mother-newborn pairs were recruited in Flanders, Belgium between February 2010 and December 2014, all with a singleton full-term birth (≥37 weeks of gestation). For statistical analysis, participants with full data on both cord blood and placental telomere lengths were included, resulting in a final study sample size of 641. Exposures: Maternal residential PM2.5 (particles with an aerodynamic diameter ≤2.5 μm) exposure during pregnancy. Main Outcomes and Measures: In the newborns, cord blood and placental tissue relative telomere length were measured. Maternal residential PM2.5 exposure during pregnancy was estimated using a high-resolution spatial-temporal interpolation method. In distributed lag models, both cord blood and placental telomere length were associated with average weekly exposures to PM2.5 during pregnancy, allowing the identification of critical sensitive exposure windows. Results: In 641 newborns, cord blood and placental telomere length were significantly and inversely associated with PM2.5 exposure during midgestation (weeks 12-25 for cord blood and weeks 15-27 for placenta). A 5-µg/m3 increment in PM2.5 exposure during the entire pregnancy was associated with 8.8% (95% CI, -14.1% to -3.1%) shorter cord blood leukocyte telomeres and 13.2% (95% CI, -19.3% to -6.7%) shorter placental telomere length. These associations were controlled for date of delivery, gestational age, maternal body mass index, maternal age, paternal age, newborn sex, newborn ethnicity, season of delivery, parity, maternal smoking status, maternal educational level, pregnancy complications, and ambient temperature. Conclusions and Relevance: Mothers who were exposed to higher levels of PM2.5 gave birth to newborns with shorter telomere length. The observed telomere loss in newborns by prenatal air pollution exposure indicates less buffer for postnatal influences of factors decreasing telomere length during life. Therefore, improvements in air quality may promote molecular longevity from birth onward
Personal NO2 and volatile organic compounds exposure levels are associated with markers of cardiovascular risk in women in the Cape Town region of South Africa
CITATION: Everson, F., et al. 2019. Personal NO2 and volatile organic compounds exposure levels are associated with markers of cardiovascular risk in women in the Cape Town region of South Africa. International Journal of Environmental Research and Public Health, 16(13):2284, doi:10.3390/ijerph16132284.The original publication is available at http://www.mdpi.comENGLISH ABSTRACT: Exposure to ambient NO2 and benzene, toluene ethyl-benzene and m+p- and o-xylenes (BTEX) is associated with adverse cardiovascular effects, but limited information is available on the effects of personal exposure to these compounds in South African populations. This 6-month follow-up study aims to determine 7-day personal ambient NO2 and BTEX exposure levels via compact passive diffusion samplers in female participants from Cape Town, and investigate whether exposure levels are associated with cardiovascular risk markers. Overall, the measured air pollutant exposure levels were lower compared to international standards. NO2 was positively associated with systolic and diastolic blood pressure (SBP and DBP), and inversely associated with the central retinal venular equivalent (CRVE) and mean baseline brachial artery diameter. o-xylene was associated with DBP and benzene was strongly associated with carotid intima media thickness (cIMT). Our findings showed that personal air pollution exposure, even at relatively low levels, was associated with several markers of cardiovascular risk in women residing in the Cape Town region.https://www.mdpi.com/1660-4601/16/13/2284Publisher's versio
Folic Acid Supplementation during Pregnancy and Its Association with Telomere Length in Children at Four Years: Results from the INMA Birth Cohort Study
This study examined the association between folic acid supplements (FAs) during different periods of pregnancy and offspring telomere length (TL) at age four in 666 children from the INMA study. FAs were self-reported using food-structured questionnaires during three periods of pregnancy (the first three months of pregnancy, from month fourth onward, and the whole pregnancy). For each period, the average daily dosage of FAs was categorised into (i) <400 μg/d, (ii) ≥400 to 999 μg/d, (iii) ≥1000 to 4999 μg/d, and (iv) ≥5000 μg/d. Leucocyte TL at age four was measured using quantitative PCR methods. Multiple robust linear log-level regression models were used to report the % difference among FA categories. During the first period, and compared with children whose mothers were classified in the reference group (<400 μg/d), children whose mothers took higher dosages of FAs showed shorter TL at age four (≥5000 μg/d). When the first and the second periods were mutually adjusted, children whose mothers self-reported ≥5000 μg/d during the first period of pregnancy had a statistically significant shorter TL than their counterparts (% difference: −7.28% [95% CI: −14.42 to −0.13]). Similar trends were observed for the whole period of pregnancy. When the analysis was stratified by sex, the association was more evident in boys (% difference: −13.5% [95% CI: −23.0 to −4.04]), whereas no association was observed in girls. This study suggests that high dosages of FAs in the first pregnancy period may be associated with a shorter TL in children at age four, particularly among boys. Further studies should confirm these results.This research was funded by Instituto de Salud Carlos III/Agencia Estatal de Investigación, grant number PI18/00825 Project: “Dieta y actividad física en embarazo y tras el nacimiento y longitud del telómero en niños y adolescentes: Proyecto TeloDiPA” and Unión Europea (FEDER) “Una manera de hacer Europa”; PI07/0314, PI11/01007 incl. FEDER funds; Generalitat Valenciana (GVA/2021/191); Dries Martens holds a postdoctoral grant by the Flemish Scientific Fund (FWO grant 12X9620N). In Sabadell was funded by grants from Instituto de Salud Carlos III (Red INMA G03/176; CB06/02/0041; PI041436; PI081151 incl. FEDER funds; PI12/01890 incl. FEDER funds; CP13/00054 incl. FEDER funds, PI15/00118 incl. FEDER funds, CPII18/00018), CIBERESP, Generalitat de Catalunya-CIRIT 1999SGR 00241, Generalitat de Catalunya-AGAUR (2009 SGR 501, 2014 SGR 822), Fundació La marató de TV3 (090430), Spanish Ministry of Economy and Competitiveness (SAF2012-32991 incl. FEDER funds), Agence Nationale de Securite Sanitaire de l’Alimentation de l’Environnement et du Travail (1262C0010), EU Commission (261357, 308333, 603794 and 634453). We acknowledge support from the Spanish Ministry of Science and Innovation and the State Research Agency through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. In Asturias was funded by ISCIII: PI04/2018, PI09/02311, PI13/02429, PI18/00909 co-funded by FEDER, “A way to make Europe”/“Investing in your future”, Obra Social Cajastur/Fundación Liberbank, and Universidad de Oviedo. This study was funded by grants from Instituto de Salud Carlos III (FIS-PI06/0867 and FIS-PI09/00090), CIBERESP, Department of Health of the Basque Government (2005111093, 2009111069 and 2013111089), and the Provincial Government of Gipuzkoa (DFG06/002 and DFG08/001) and annual agreements with the municipalities of the study area (Zumarraga, Urretxu, Legazpi, Azkoitia y Azpeitia y Beasain). Jordi Julvez holds the Miguel Servet-II contract (CPII19/00015) awarded by the Instituto de Salud Carlos III (co-funded by the European Social Fund “Investing in your future”)
Air Pollution Stress and the Aging Phenotype: The Telomere Connection
Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.status: publishe
Early Biological Aging and Fetal Exposure to High and Low Ambient Temperature: A Birth Cohort Study
BACKGROUND: Although studies have provided estimates of premature mortality to either heat or cold in adult populations, and fetal exposure to ambient temperature may be associated with life expectancy, the effects of temperature on aging in early life have not yet been studied. Telomere length (TL) is a marker of biological aging, and a short TL at birth may predict lifespan and disease susceptibility later in life. OBJECTIVES: We studied to what extent prenatal ambient temperature exposure is associated with newborn TL. METHODS: In the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort in Flanders, Belgium, we measured cord blood and placental TL in 1,103 mother-newborn pairs (singletons with
≥
36
wk
of gestation) using a quantitative real-time polymerase chain reaction (qPCR) method. We associated newborn TL with average weekly exposure to ambient temperature using distributed lag nonlinear models (DLNMs) while controlling for potential confounders. Double-threshold DLNMs were used to estimate cold and heat thresholds and the linear associations between temperature and TL below the cold threshold and above the heat threshold. RESULTS: Prenatal temperature exposure above the heat threshold (19.5°C) was associated with shorter cord blood TL. The association with a 1°C increase in temperature was strongest at week 36 of gestation and resulted in a 3.29% [95% confidence interval (CI):
-
4.67
,
-
1.88
] shorter cord blood TL. Consistently, prenatal temperature exposure below the cold threshold (5.0°C) was associated with longer cord blood TL. The association with a 1°C decrease in temperature was strongest at week 10 of gestation with 0.72% (95% CI: 0.46, 0.97) longer cord blood TL. DISCUSSION: Our study supports potential effects of prenatal temperature exposure on longevity and disease susceptibility later in life. Future climate scenarios might jeopardize the potential molecular longevity of future generations from birth onward. https://doi.org/10.1289/EHP5153.status: publishe
- …