26 research outputs found

    Recreation and hunting differentially affect deer behaviour and sapling performance

    Get PDF
    Humans are increasingly acknowledged as apex predators that shape landscapes of fear to which herbivores adapt their behaviour. Here, we investigate how humans modify deer space-use and their effects on vegetation at two spatial scales; zones with different types of human use (largescale risk factor) and, nested within that, trails (fine-scale risk factor). In zones with three contrasting types of human activities: 1) no recreation, no hunting, 2) with recreation, no hunting and 3) with recreation and hunting, we linked deer space-use (dropping counts) to browsing intensity, relative growth and survival of planted saplings. Plots were located at two distances to trails (20 versus 100 m) to test how trails affect deer space-use and sapling performance. Additionally, plots were distributed over forest and heathland as risk effects are habitat-dependent. Deer space-use was highest in the zone without recreation or hunting, resulting in higher browsing levels and lower sapling growth and survival, but only in heathland. In contrast, deer space-use and sapling performance did not differ between zones with recreation only and zones with recreation and hunting. Deer dropping counts were lower near trails used for recreation, but this was not associated with browsing impact or sapling performance. Our results show that recreational use modifies deer space-use which is associated with browsing impact on woody vegetation, while seasonal hunting activities in zones with recreation did not have additive year-round effects. Yet, effects were only observed at the larger scale of recreation zones and not near trails. Furthermore, deer space-use was only associated with sapling performance in open heathland, where high visibility presumably increases avoidance behaviour because it increases detectability and decreases escape possibilities. This suggests that recreation creates behaviourally mediated cascading effects that influence vegetation development, yet these effects are context-dependent. We advocate incorporating human-induced fear effects in conservation, management and research

    Olfactory cues of large carnivores modify red deer behavior and browsing intensity

    Get PDF
    This study examined the effect of perceived predation risk imposed by lynx (Lynx lynx) and wolf (Canis lupus) on red deer (Cervus elaphus) foraging behavior under experimental conditions. We hypothesized that in response to large carnivore scent red deer would increase their vigilance, although reducing the frequency and duration of visits to foraging sites. Consequently, browsing intensity on tree saplings was expected to decrease, whereas a higher proportion of more preferred species was expected to be browsed to compensate for higher foraging costs. We expected stronger responses towards the ambush predator lynx, compared with the cursorial predator wolf. These hypotheses were tested in a cafeteria experiment conducted within three red deer enclosures, each containing four experimental plots with olfactory cues of wolf, lynx, cow, and water as control. On each plot, a camera trap was placed and browsing intensity was measured for one consecutive week, repeated three times. Red deer reduced their visitation duration and browsing intensity on plots with large carnivore scent. Despite red deer showing a clear preference for certain tree species, the presence of large carnivore scent did not change selectivity towards different tree species. Contrary to our hypothesis, we found more pronounced effects of wolf (cursorial) compared with lynx (ambush). This study is the first to experimentally assess the perceived risk effects on the red deer foraging behavior of large carnivores differing in hunting modes. Our findings provide insights into the role of olfactory cues in predator-prey interactions and how they can modify fine-scale herbivore-plant interactions.publishedVersio

    Humans rather than Eurasian lynx (Lynx lynx) shape ungulate browsing patterns in a temperate forest

    Get PDF
    The recolonization of human-dominated landscapes by large carnivores has been followed with considerable scientific interest; however, little is known about their interactive effect on ungulate foraging behavior. This study compared the risks imposed by humans and lynx on ungulate foraging behavior by examining the effects of browsing intensity (at two spatial scales), diet quality, and tree species selection. We hypothesized that: (1) in areas with high risk imposed by humans and lynx browsing intensity would be reduced; (2) risk effects would interact with habitat visibility at a fine scale, resulting in contrasting browsing patterns in response to humans versus lynx risk; (3) ungulates compensate for the higher costs incurred in high-risk areas by switching to a higher diet quality, and (4) browse a higher proportion of more-preferred tree species. These hypotheses were tested by measuring browsing intensity along 48 transects located at different distances from human settlements within the hunted and nonhunted areas of the Bavarian Forest. Dung samples were collected and analyzed as a proxy of diet quality (C:N ratio, fiber). The spatial patterns of browsing intensity, diet quality, and tree species selection were then linked to lynx risk, hunting intensity, recreation intensity, and distance to human settlements. Our results showed that (1) browsing intensity strongly decreased with increasing recreational activities, whereas it increased with lynx risk; (2) only in close proximity to human settlements tree browsing was higher in dense habitats and (3) a higher diet quality was obtained. (4) We found a stronger avoidance of the less preferred tree species in high-hunting intensity areas. In conclusion, our results indicate that the risk effects of human activities outweigh those of a natural large carnivore. Thus, highlighting the importance of taking those activities into account in predicting the impacts of large carnivores on ungulates and their plant-food choices.publishedVersio

    Nitrogen transfer between herbivores and their forage species

    Get PDF
    Herbivores may increase the productivity of forage plants; however, this depends on the return of nutrients from faeces to the forage plants. The aim of this study was to test if nitrogen (N) from faeces is available to forage plants and whether the return of nutrients differs between plant species using (15)N natural abundance in faeces and plant tissue. To investigate the effect of grazing on N transfer, we carried out a grazing experiment in wet and mesic tundra on high Arctic Spitsbergen using barnacle geese (Branta leucopsis) as the model herbivore. N inputs (from faeces) increased with grazing pressure at both the wet and mesic sites, with the greatest N input from faeces at the wet site. The delta(15)N ratio in plant tissue from grazed plots was enriched in mosses and the dwarf shrub species, reflecting the delta(15)N signature of faeces-derived N, but no such pattern was observed in the dominant grasses. This study demonstrates that the delta(15)N signature of faeces and forage species is a useful tool to explore how grazing impacts on N acquisition. Our findings suggest that plant species which acquire their N close to the soil surface (e.g. mosses) access more of the N from faeces than species with deeper root systems (e.g. grasses) suggesting a transfer of N from the preferred forage species to the mosses and dwarf shrubs, which are less preferred by the geese. In conclusion, the moss layer appears to disrupt the nitrogen return from herbivores to their forage species

    Camtrap DP: an open standard for the FAIR exchange and archiving of camera trap data

    Get PDF
    Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap-derived Big Data are becoming increasingly solvable with the help of scalable cyber-infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media-based and event-based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in-depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard. Biodiversity data, camera traps, data exchange, data sharing, information standardspublishedVersio

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Polygyny in the dusky warbler, Phylloscopus fuscatus: the importance of female qualities. Animal Behaviour 62

    No full text
    The polygyny threshold model states that secondary females gain benefits from high territory quality that outweigh the costs of sharing a male. We aimed to test this prediction using the dusky warbler as a model species. We first showed that neither the shifted sex ratio hypothesis nor the no-cost models were likely to apply to our study. Secondary females settled in territories of higher quality (high food abundance, low predator density) and had a nonsignificantly higher reproductive success than simultaneously settling monogamous females. However, there were strong indications that these two groups of females differed intrinsically. Secondary females were older than late monogamous females, and while they replaced lost clutches more often, they also suffered from a nonsignificantly higher winter mortality. Consequently, it was impossible to tell whether differences in reproductive success were caused by differences in territory quality or in female qualities. Our study suggests that female choice may also depend on characteristics that are specific to the individual, and may therefore be more sophisticated than allowed for in traditional polygyny models. In other words, the polygyny threshold may be not the same for all individuals. We suggest that prior breeding experience may help older females to profit more from the benefits and to suffer less from the costs of polygyny than young females

    Fire- and herbivory-driven consumer control in a savanna-like temperate wood-pasture: An experimental approach

    Get PDF
    1. Fire and herbivory are fundamental top-down processes, structuring grass-tree ratios in ecosystems across a diversity of climates. Both are plant consumers that can strongly control the recruitment of woody seedlings and saplings to taller height classes. Without consumer control, many grass-dominated ecosystems would convert into woodlands or forests. While extensively studied in savannas, few have explored the effects of these disturbance regimes on woody recruitment under temperate conditions.2. We exposed saplings of five common European tree species to fire and herbivory in a full factorial experiment in a savanna-like wood-pasture. After 3 years, we evaluated the effects of fire and herbivory on tree sapling survival and height increment. The tree species used, varying in traits and in expected response to fire and herbivory, were Scots pine Pinus sylvestris, Norway spruce Picea abies, European oak Quercus robur, Silver birch Betula pendula and Small-leaved lime Tilia cordata.3. Fire and herbivory had a negative effect on sapling survival for all species except for Q. robur, which was not affected by fire. Both processes reduced height increment of B. pendula, while only herbivory reduced the height increment of P. sylvestris and Q. robur. At the same time, B. pendula and P. sylvestris had some of the highest increments, together with P. abies, which had unaffected height increment in all treatments. T. cordata, on the other hand, had a negative height increment across all treatments. Overall, the combined effect of fire and herbivory was similar to the effect of herbivory alone on both survival and height increment, indicating no additional effect of fire when herbivores were present.4. Synthesis. Our experiment showed how fire and herbivory can strongly affect the recruitment of European temperate tree saplings on a wood-pasture, potentially leading to comparable consumer control described for ecosystems elsewhere (e.g. savannas). Two strategies to deal with fire and herbivory were identified: tolerance (Q. robur) and avoidance (P. sylvestris and B. pendula). We conclude that both fire and herbivory may have been important drivers of structure and species composition in open ecosystems in temperate Europe in the past

    Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak

    No full text
    African swine fever (ASF) has been spreading in the Eurasian continent for more than 10 years now. Although the course of ASF in domestic pigs and its negative economic impact on the pork industry are well-known, we still lack a quantitative assessment of the impact of ASF on wild boar (Sus scrofa) populations under natural conditions. Wild boar is not only a reservoir for ASF; it is also one of the key wildlife species affecting structure and functioning of ecosystems. Therefore, knowledge on how ASF affects wild boar populations is crucial to better predict ecosystem response and for the design of scientific-based wild boar management to control ASF. We used a long-term camera trap survey (2012-2017) from the Białowieza Primeval Forest (BPF, Poland), where an ASF outbreak occurred in 2015, to investigate the impact of the disease on wild boar population dynamics under two contrasting management regimes (hunted vs. non-hunted). In the hunted part of BPF ("managed area"), hunting was drastically increased prior and after the first ASF case occurred (March 2015), whereas inside the National Park, hunting was not permitted ("unmanaged area," first detected case in June 2015). Using a random encounter model (REM), we showed that the density and abundance of wild boar dropped by 84 and 95% within 1 year following ASF outbreak in the unmanaged and managed area, respectively. In the managed area, we showed that 11-22% additional mortality could be attributed to hunting. Our study suggests that ASF-induced mortality, by far, outweighs hunting-induced mortality in causing wild boar population decline and shows that intensified hunting in newly ASF-infected areas does not achieve much greater reduction of population size than what is already caused by the ASF virus.publishe
    corecore