2,419 research outputs found

    PCOST.com

    Get PDF

    A lunar base reference mission for the phased implementation of bioregenerative life support system components

    Get PDF
    Previous design efforts of a cost effective and reliable regenerative life support system (RLSS) provided the foundation for the characterization of organisms or 'biological processors' in engineering terms and a methodology was developed for their integration into an engineered ecological LSS in order to minimize the mass flow imbalances between consumers and producers. These techniques for the design and the evaluation of bioregenerative LSS have now been integrated into a lunar base reference mission, emphasizing the phased implementation of components of such a BLSS. In parallel, a designers handbook was compiled from knowledge and experience gained during past design projects to aid in the design and planning of future space missions requiring advanced RLSS technologies. The lunar base reference mission addresses in particular the phased implementation and integration of BLS parts and includes the resulting infrastructure burdens and needs such as mass, power, volume, and structural requirements of the LSS. Also, operational aspects such as manpower requirements and the possible need and application of 'robotics' were addressed

    Viral and non-viral generation and characterization of induced pluripotent stem cells from human amniotic fluid cells

    No full text
    The ability to induce pluripotency in somatic cells offers unprecedented opportunities in basic and applied research. The implementation of induced pluripotent stem cells (iPSCs) into clinical settings, however, is hampered by genetic modifications associated with retro- or lentivirus-mediated reprogramming. The quest for efficient alternative reprogramming approaches has been closely connected with the identification of cell sources, which readily acquire the pluripotent stem cell (PSC) state. Human amniotic fluid cells (AFCs) represent routinely available cells with stem cell-like features, which could presumably facilitate efficient reprogramming even by non-integrating techniques. The goal of this project was to generate and comparatively characterize iPSCs derived from human AFCs by viral and non-viral techniques with respect to human embryonic stem cells (ESCs), the golden standard of PSCs, and iPSCs generated from cells of other tissues of origin. Retrovirus-mediated overexpression of the reprogramming factors in primary human AFCs resulted in fast and efficient generation of iPSCs (AFiPSCs), which resembled human ESCs with regards to morphology, proliferation and marker expression. Their ability to differentiate into derivatives of the three embryonic germ layers was demonstrated in vitro and in vivo and upon BMP2 and BMP4-treatment expression of trophoblast markers, including CDX2, KRT7 and HAND1, was confirmed. Detailed microarray-based transcriptome analysis of ESCs, AFiPSCs, fibroblast-derived iPSCs (FiPSCs) and the respective parental cell lines revealed the activation of a transcriptional regulatory network common to all PSCs but also highlighted, for example, residual gene expression signatures in iPSCs from different tissues of origin. These findings were summarized in a concept coined the LARGE Principle of Cellular Reprogramming. Genetic manipulation of AFiPSCs was not accomplished. Attempts to reprogram human AFCs by non-viral, non-integrating methods included nucleofection of episomal plasmids and lipofection of mRNAs encoding the reprogramming factors. Despite multiple trials fully reprogrammed iPSCs could not be established. In depth analysis of the cellular response to the transfected mRNAs uncovered an extensive induction of interferon-regulated immune-related genes to be the key roadblock in mRNA-mediated reprogramming. Subsequent efforts to identify chemicals which could suppress this innate immune reaction did not yield potent candidates. The data presented herein, however, provide the basis for further investigations into this effect. In summary, this work highlights the value of human AFCs for the derivation of iPSCs and emphasizes the obstacles that need to be overcome before AFiPSCs can potentially be employed into clinical settings

    Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce : calibration and validation

    Get PDF
    A kinetic model of nitrogen (N) uptake throughout growth was developed for lettuce cultivated in nutrient solution under varying natural light conditions. The model couples nitrogen uptake with dry matter accumulation using a two-compartment mechanistic approach, incorporating structural and non-structural pools. Maximum nitrogen uptake rates are assumed to decline with shoot dry weight, to allow for the effects of plant age. The model was parameterized using data from the literature, and calibrated for differences in light intensity using an optimization algorithm utilizing data from three experiments in different growing seasons. The calibrated model was validated against the data from two independent experiments conducted under different light conditions. Results showed that the model made good predictions of nitrogen uptake by plants from seedlings to maturity under fluctuating light levels in a glasshouse. Plants grown at a higher light intensity showed larger maximum nitrogen uptake rates, but the effect of light intensity declined towards plant maturity

    Evolution of Derwael Ice Rise in Dronning Maud Land, Antarctica, over the last millennia

    Get PDF
    Ice rises situated in the ice-shelf belt around Antarctica have a spatially confined flow regime with local ice divides. Beneath the divides, ice stratigraphy often develops arches with amplitudes that record the divide's horizontal residence time andsurface elevation changes. To investigate the evolution of Derwael Ice Rise, Dronning Maud Land, Antarctica, we combine radar and GPS data from three consecutive surveys, with a two-dimensional, full Stokes, thermomechanically-coupled, transient ice-flow model. We find that the surface mass balance (SMB) is higher on the upwind and lower on the downwind slopes. Near the crest, the SMB is anomalously low and causes arches to form in the shallow stratigraphy, observable by radar. In deeper ice, arches are consequently imprinted by both SMB and ice rheology (Raymond effect). The data show how arch amplitudes decrease as along-ridge slope increases, emphasizing that the lateral positioning of radar cross-sections is important for the arch interpretation. Using the model with three rheologies (isotropic with n = 3,4.5 and anisotropic with n = 3), we show that Derwael Ice Rise is close to steady-state, but is best explained using ice anisotropy and moderate thinning. Our preferred, albeit notunique, scenario suggests that the ice divide has existed for at least 5000 years and lowered at approximately 0.03 m a−1 over the last 3400 years. Independent of the specific thinning scenario, our modeling suggests that Derwael Ice Rise has exhibited a local flow regime at least since the Mid-Holocene

    The Green Horizons Scoreboard: indicators on innovation for sustainable development

    Get PDF

    Mass customization of teaching and learning in organizations

    Get PDF
    In search of methods that improve the efficiency of teaching and training in organizations, several authors point out that mass customization (MC) is a principle that covers individual needs of knowledge and skills and, at the same time, limits the development costs of customized training to those of mass training. MC is proven and established in the economic sector, and shows high potential for continuing education, too. The paper explores this potential and proposes a multidisciplinary, pragmatic approach to teaching and training in organizations. The first section of the paper formulates four design principles of MC deduced from an examination of economics literature. The second section presents amit™, a frame for mass customized training, designed according to the principles presented in the first section. The evaluation results encourage the further development and use of mass customized training in continuing education, and offer suggestions for future research

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot
    corecore