89 research outputs found

    Change in health literacy over a decade in a prospective cohort of community-dwelling older adults

    Get PDF
    BACKGROUND: Health literacy is often viewed as a static trait in longitudinal studies, which may over or underestimate an individual’s ability to manage one’s health. OBJECTIVES: We sought to examine health literacy over time among older adults using three widely used measures. DESIGN: A prospective cohort study. PARTICIPANTS: Community-dwelling adults ages 55 to 74 at baseline with at least one follow-up visit (N = 656) recruited from one academic internal medicine clinic and six community health centers in Chicago, IL. MEASURES: Health literacy was measured using the Test of Functional Health Literacy in Adults (TOFHLA), Newest Vital Sign (NVS), and Rapid Estimate of Adult Literacy in Medicine (REALM) at baseline and up to three follow-up time points. RESULTS: In unadjusted analyses, significant changes since baseline were found beginning at the second follow-up (mean (M) = 6.0 years, SD = 0.6) for the TOFHLA (M = − 0.9, SD = 0.95, p = 0.049) and the REALM (M = 0.3, SD = 2.5, p = 0.004) and at the last follow-up (M = 8.6 years, SD = 0.5) for the NVS (M = − 0.2, SD = 1.4, p = 0.02). There were non-linear effects of baseline age on TOFHLA and NVS scores over time (piecewise cubic spline p = 0.01 and p < 0.001, respectively) and no effect on REALM scores (B = 0.02, 95% CI − 0.01 to 0.04, p = 0.17) using multivariable mixed-effects linear regression models, controlling for race, education, income, and comorbidity. CONCLUSION: We found a negative relationship between age and health literacy over time as measured by the TOFHLA and NVS. Health literacy barriers appear to be more prevalent among individuals in later life, when self-care demands are similarly increasing. Clinicians might consider strategies to assess and respond to limited health literacy, particularly among patients 70 and older. REALM performance remained stable over 10 years of follow-up. This questions whether health literacy tools measure the same attribute. Prospective health literacy studies should carefully consider what measures to use, depending on their objective

    Rational Design of Temperature-Sensitive Alleles Using Computational Structure Prediction

    Get PDF
    Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate “top 5” list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions

    ACRATA: a novel electron transfer domain associated to apoptosis and cancer

    Get PDF
    BACKGROUND: Recently, several members of a vertebrate protein family containing a six trans-membrane (6TM) domain and involved in apoptosis and cancer (e.g. STEAP, STAMP1, TSAP6), have been identified in Golgi and cytoplasmic membranes. The exact function of these proteins remains unknown. METHODS: We related this 6TM domain to distant protein families using intermediate sequences and methods of iterative profile sequence similarity search. RESULTS: Here we show for the first time that this 6TM domain is homolog to the 6TM heme binding domain of both the NADPH oxidase (Nox) family and the YedZ family of bacterial oxidoreductases. CONCLUSIONS: This finding gives novel insights about the existence of a previously undetected electron transfer system involved in apoptosis and cancer, and suggests further steps in the experimental characterization of these evolutionarily related families

    Is music enriching for group-housed captive chimpanzees (Pan troglodytes)?

    Get PDF
    Many facilities that house captive primates play music for animal enrichment or for caregiver enjoyment. However, the impact on primates is unknown as previous studies have been inconclusive. We conducted three studies with zoo-housed chimpanzees (Pan troglodytes) and one with group-housed chimpanzees at the National Centre for Chimpanzee Care to investigate the effects of classical and pop/rock music on various variables that may be indicative of increased welfare. Study one compared the behaviour and use of space of 18 animals when silence, classical or pop/rock music was played into one of several indoor areas. Overall, chimpanzees did not actively avoid the area when music was playing but were more likely to exit the area when songs with higher beats per minute were broadcast. Chimpanzees showed significantly fewer active social behaviours when music, rather than silence, was playing. They also tended to be more active and engage in less abnormal behaviour during the music but there was no change to either self-grooming or aggression between music and silent conditions. The genre of music had no differential effects on the chimpanzees’ use of space and behaviour. In the second study, continuous focal observations were carried out on three individuals with relatively high levels of abnormal behaviour. No differences in behaviour between music and silence periods were found in any of the individuals. The final two studies used devices that allowed chimpanzees to choose if they wanted to listen to music of various types or silence. Both studies showed that there were no persistent preferences for any type of music or silence. When taken together, our results do not suggest music is enriching for group-housed captive chimpanzees, but they also do not suggest that music has a negative effect on welfare

    Large-scale mapping of bioactive peptides in structural and sequence space

    Get PDF
    Health-enhancing potential bioactive peptide (BP) has driven an interest in food proteins as well as in the development of predictive methods. Research in this area has been especially active to use them as components in functional foods. Apparently, BPs do not have a given biological function in the containing proteins and they do not evolve under independent evolutionary constraints. In this work we performed a large-scale mapping of BPs in sequence and structural space. Using well curated BP deposited in BIOPEP database, we searched for exact matches in non-redundant sequences databases. Proteins containing BPs, were used in fold-recognition methods to predict the corresponding folds and BPs occurrences were mapped. We found that fold distribution of BP occurrences possibly reflects sequence relative abundance in databases. However, we also found that proteins with 5 or more than 5 BP in their sequences correspond to well populated protein folds, called superfolds. Also, we found that in well populated superfamilies, BPs tend to adopt similar locations in the protein fold, suggesting the existence of hotspots. We think that our results could contribute to the development of new bioinformatics pipeline to improve BP detection.Fil: Nardo, Agustina Estefania. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Añon, Maria Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Parisi, Gustavo Daniel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    Get PDF
    BACKGROUND: Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. METHODOLOGY/PRINCIPAL FINDINGS: A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. CONCLUSIONS/SIGNIFICANCE: The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families

    TeenCovidLife: a resource to understand the impact of the COVID-19 pandemic on adolescents in Scotland

    Get PDF
    TeenCovidLife is part of Generation Scotland’s CovidLife projects, a set of longitudinal observational studies designed to assess the psychosocial and health impacts of the COVID-19 pandemic. TeenCovidLife focused on how adolescents in Scotland were coping during the pandemic. As of September 2021, Generation Scotland had conducted three TeenCovidLife surveys. Participants from previous surveys were invited to participate in the next, meaning the age ranges shifted over time. TeenCovidLife Survey 1 consists of data from 5,543 young people age 12 to 17, collected from 22 May to 5 July 2020, during the first school closures period in Scotland. TeenCovidLife Survey 2 consists of data from 2,245 young people aged 12 to 18, collected from 18 August to 14 October 2020, when the initial lockdown measures were beginning to ease, and schools reopened in Scotland. TeenCovidLife Survey 3 consists of data from 597 young people age 12 to 19, collected from 12 May to 27 June 2021, a year after the first survey, after the schools returned following the second lockdown in 2021. A total of 316 participants took part in all three surveys. TeenCovidLife collected data on general health and well-being, as well as topics specific to COVID-19, such as adherence to COVID-19 health guidance, feelings about school closures, and the impact of exam cancellations. Limited work has examined the impact of the COVID-19 pandemic on young people. TeenCovidLife provides relevant and timely data to assess the impact of the pandemic on young people in Scotland. The dataset is available under authorised access from Generation Scotland; see the Generation Scotland website for more information

    The LabelHash algorithm for substructure matching

    Get PDF
    Background: There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity. Results: We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are expanded to complete matches. The general applicability of the algorithm is demonstrated with three different case studies. First, we show that we can accurately identify members of the enolase superfamily with a single motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in the 95 % sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes. The LabelHash algorithm is available through a web server and as a suite of standalone programs a

    Structural genomics target selection for the New York consortium on membrane protein structure

    Get PDF
    The New York Consortium on Membrane Protein Structure (NYCOMPS), a part of the Protein Structure Initiative (PSI) in the USA, has as its mission to establish a high-throughput pipeline for determination of novel integral membrane protein structures. Here we describe our current target selection protocol, which applies structural genomics approaches informed by the collective experience of our team of investigators. We first extract all annotated proteins from our reagent genomes, i.e. the 96 fully sequenced prokaryotic genomes from which we clone DNA. We filter this initial pool of sequences and obtain a list of valid targets. NYCOMPS defines valid targets as those that, among other features, have at least two predicted transmembrane helices, no predicted long disordered regions and, except for community nominated targets, no significant sequence similarity in the predicted transmembrane region to any known protein structure. Proteins that feed our experimental pipeline are selected by defining a protein seed and searching the set of all valid targets for proteins that are likely to have a transmembrane region structurally similar to that of the seed. We require sequence similarity aligning at least half of the predicted transmembrane region of seed and target. Seeds are selected according to their feasibility and/or biological interest, and they include both centrally selected targets and community nominated targets. As of December 2008, over 6,000 targets have been selected and are currently being processed by the experimental pipeline. We discuss how our target list may impact structural coverage of the membrane protein space
    corecore