61 research outputs found

    Phenotypic covariance structure and its divergence for acoustic mate attraction signals among four cricket species

    Get PDF
    The phenotypic variance–covariance matrix (P) describes the multivariate distribution of a population in phenotypic space, providing direct insight into the appropriateness of measured traits within the context of multicollinearity (i.e., do they describe any significant variance that is independent of other traits), and whether trait covariances restrict the combinations of phenotypes available to selection. Given the importance of P, it is therefore surprising that phenotypic covariances are seldom jointly analyzed and that the dimensionality of P has rarely been investigated in a rigorous statistical framework. Here, we used a repeated measures approach to quantify P separately for populations of four cricket species using seven acoustic signaling traits thought to enhance mate attraction. P was of full or almost full dimensionality in all four species, indicating that all traits conveyed some information that was independent of the other traits, and that phenotypic trait covariances do not constrain the combinations of signaling traits available to selection. P also differed significantly among species, although the dominant axis of phenotypic variation (pmax) was largely shared among three of the species (Acheta domesticus, Gryllus assimilis, G. texensis), but different in the fourth (G. veletis). In G. veletis and A. domesticus, but not G. assimilis and G. texensis, pmax was correlated with body size, while pmax was not correlated with residual mass (a condition measure) in any of the species. This study reveals the importance of jointly analyzing phenotypic traits

    Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus

    No full text
    If male sexual signalling is honest because it captures genetic variation in condition then traits that are important mate choice cues should be disproportionately affected by inbreeding relative to other traits. To test this, we investigated the effect of brother-sister mating on advertisement calling by male field crickets Teleogryllus commodus. We quantified the effect of one generation of inbreeding on nightly calling effort and five finer-scale aspects of call structure that have been shown to influence attractiveness. We also quantified inbreeding depression on six life history traits and one morphological trait. Inbreeding significantly reduced hatching success, nymph survival and adult lifespan but had no detectable effect on hatching rate, developmental rate or adult body mass. The effect of inbreeding on sexually selected traits was equivocal. There was no decline in calling effort (seconds of sound production/night) by inbred males, but there were highly significant changes in three of five finer-scale call parameters. Sexually selected traits clearly vary in their susceptibility to inbreeding depression

    Do female black field crickets Teleogryllus commodus benefit from polyandry?

    No full text
    Female insects that mate multiply tend to have increased lifetime fitness, apparently because of greater access to male-derived resources (e.g. sperm, nuptial gifts) that elevate fertility/fecundity. Experiments that standardize the number of matings pe
    corecore