55 research outputs found

    DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair.

    Get PDF
    XRCC4 and XLF are two structurally related proteins that function in DNA double-strand break (DSB) repair. Here, we identify human PAXX (PAralog of XRCC4 and XLF, also called C9orf142) as a new XRCC4 superfamily member and show that its crystal structure resembles that of XRCC4. PAXX interacts directly with the DSB-repair protein Ku and is recruited to DNA-damage sites in cells. Using RNA interference and CRISPR-Cas9 to generate PAXX(-/-) cells, we demonstrate that PAXX functions with XRCC4 and XLF to mediate DSB repair and cell survival in response to DSB-inducing agents. Finally, we reveal that PAXX promotes Ku-dependent DNA ligation in vitro and assembly of core nonhomologous end-joining (NHEJ) factors on damaged chromatin in cells. These findings identify PAXX as a new component of the NHEJ machinery.T.O. and T.L.B. are supported by the Wellcome Trust. The Jackson lab is funded by Cancer Research UK (CRUK) program grant C6/A11224, the European Research Council and the European Community Seventh Framework Programme grant agreement no. HEALTH-F2-2010- 259893 (DDResponse). Core infrastructure funding to the Jackson lab is provided by CRUK (C6946/A14492) and the Wellcome Trust (WT092096). S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK. V.M.D. is a CRUK Career Development Fellow. The Draviam lab is funded by a CRUK CDA (C28598/A9787).This is the accepted manuscript version. The final version is available from AAAS at http://www.sciencemag.org/content/347/6218/185.full

    Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs

    Get PDF
    The DNA-dependent adenosine triphosphatase (ATPase) Plk1-interacting checkpoint helicase (PICH) has recently been implicated in spindle checkpoint (SAC) signaling (Baumann et al., Cell 128(1):101–114, 2007). Depletion of PICH by siRNA abolished the SAC and resulted in an apparently selective loss of Mad2 from kinetochores, suggesting a role for PICH in the regulation of the Mad1–Mad2 interaction. An apparent rescue of SAC functionality by overexpression of PICH in PICH-depleted cells initially seemed to confirm a role for PICH in the SAC. However, we have subsequently discovered that all PICH-directed siRNA oligonucleotides that abolish the SAC also reduce Mad2 mRNA and protein expression. This reduction is functionally significant, as PICH siRNA does not abolish SAC activity in a cell line that harbors a bacterial artificial chromosome driving the expression of murine Mad2. Moreover, we identified several siRNA duplexes that effectively deplete PICH but do not significantly affect SAC functionality or Mad2 abundance or localization. Finally, we discovered that the ability of overexpressed PICH to restore SAC activity in PICH-depleted cells depends on sequestration of the mitotic kinase Plk1 rather than ATPase activity of PICH, pointing to an underlying mechanism of “bypass suppression.” In support of this view, depletion or inhibition of Plk1 also rescued SAC activity in cells harboring low levels of Mad2. This observation suggests that a reduction of Plk1 activity partially compensates for reduced Mad2 levels and argues that Plk1 normally reduces the strength of SAC signaling. Collectively, our results question the role of PICH in the SAC and instead identify Mad2 as a sensitive off target for small RNA duplexes. In support of the latter conclusion, our evidence suggests that an off-target effect on Mad2 may also contribute to explain the apparent role of the Tao1 kinase in SAC signaling (Draviam et al., Nat Cell Biol 9(5):556–564, 2007)

    Roles for the Conserved Spc105p/Kre28p Complex in Kinetochore-Microtubule Binding and the Spindle Assembly Checkpoint

    Get PDF
    Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain approximately 70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes

    Centrosome clustering and Cyclin D1 gene amplification in double minutes are common events in chromosomal unstable bladder tumors

    Get PDF
    Background: Aneuploidy, centrosome abnormalities and gene amplification are hallmarks of chromosome instability (CIN) in cancer. Yet there are no studies of the in vivo behavior of these phenomena within the same bladder tumor. Methods: Twenty-one paraffin-embedded bladder tumors were analyzed by conventional comparative genome hybridization and fluorescence in situ hybridization (FISH) with a cyclin D1 gene (CCND1)/centromere 11 dual-color probe. Immunofluorescent staining of α, β and γ tubulin was also performed. Results: Based on the CIN index, defined as the percentage of cells not displaying the modal number for chromosome 11, tumors were classified as CIN-negative and CIN-positive. Fourteen out of 21 tumors were considered CIN-positive. All T1G3 tumors were included in the CIN-positive group whereas the majority of Ta samples were classified as CIN-negative tumors. Centrosome clustering was observed in six out of 12 CIN-positive tumors analyzed. CCND1 amplification in homogeneously staining regions was present in six out of 14 CIN-positive tumors; three of them also showed amplification of this gene in double minutes. Conclusions: Complex in vivo behavior of CCND1 amplicon in bladder tumor cells has been demonstrated by accurate FISH analysis on paraffin-embedded tumors. Positive correlation between high heterogeneity, centrosome abnormalities and CCND1 amplification was found in T1G3 bladder carcinomas. This is the first study to provide insights into the coexistence of CCND1 amplification in homogeneously staining regions and double minutes in primary bladder tumors. It is noteworthy that those patients whose tumors showed double minutes had a significantly shorter overall survival rate (p < 0.001)

    Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    Get PDF
    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases

    Epistatic Module Detection for Case-Control Studies: A Bayesian Model with a Gibbs Sampling Strategy

    Get PDF
    The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules. Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson's disease, the proposed method identifies seven suspicious loci that may contribute independently to the disease

    Tau-based treatment strategies in neurodegenerative diseases

    Full text link

    A functional genomic screen identifies a role for TAO1 kinase in spindle-checkpoint signalling

    No full text
    Defects in chromosome-microtubule attachment trigger spindle-checkpoint activation and delay mitotic progression(1,2). How microtubule attachment is sensed and integrated into the steps of checkpoint-signal amplification is poorly understood. In a functional genomic screen targeting human kinases and phosphatases, we identified a microtubule affinity-regulating kinase kinase, TAO1 (also known as MARKK) as an important regulator of mitotic progression, required for both chromosome congression and checkpoint-induced anaphase delay. TAO1 interacts with the checkpoint kinase BubR1 and promotes enrichment of the checkpoint protein Mad2 at sites of defective attachment, providing evidence for a regulatory step that precedes the proposed Mad2-Mad1 dependent checkpoint- signal amplification step(3). We propose that the dual functions of TAO1 in regulating microtubule dynamics and checkpoint signalling may help to coordinate the establishment and monitoring of correct congression of chromosomes, thereby protecting genomic stability in human cells
    corecore