606 research outputs found
Trans-cerebral HCO3- and PCO2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO(3)(−)]) and carbon dioxide tension (PCO(2)) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO(2) (PaCO(2)) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO(3)(−)] increased by 0.15 ± 0.05 mmol ⋅ l(−1) per mmHg elevation in PaCO(2) across a wide physiological range (35 to 60 mmHg PaCO(2); P < 0.001). The narrowing of the venous-arterial [HCO(3)(−)] and PCO(2) differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO(3)(−)] exchange (CBF × venous-arterial [HCO(3)(−)] difference) was reduced indicating a shift from net release toward net uptake of [HCO(3)(−)] (P = 0.004). Arterial [HCO(3)(−)] was reduced by −0.48 ± 0.15 mmol ⋅ l(−1) per nmol ⋅ l(−1) increase in arterial [H(+)] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO(3)(−)] difference and arterial [H(+)] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO(3)(−)] exchange was unaltered throughout exercise when indexed against arterial [H(+)] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO(3)(−)] – during acute respiratory/exercise-induced metabolic acidosis, respectively – differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO(3)(−)] exchange)
AfrOBIS: a marine biogeographic information system for sub-Saharan Africa
AfrOBIS is one of 11 global nodes of the Ocean Biogeographic Information System (OBIS), a freely accessible network of databases collating marine data in support of the Census of Marine Life. Versatile graphic products, provided by OBIS, can be used to display the data. To date, AfrOBIS has loaded about 3.2 million records of more than 23 000 species located mainly in the seas around southern Africa. This forms part of the 13.2 million records of more than 80 000 species currently stored in OBIS. Scouting for South African data has been successful, whereas locating records in other African countries has been much less so
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
Retinoic Acid Restores Adult Hippocampal Neurogenesis and Reverses Spatial Memory Deficit in Vitamin A Deprived Rats
A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD) on neurogenesis and memory and the ability of retinoic acid (RA) treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function
The impact of muscle relaxation techniques on the quality of life of cancer patients, as measured by the FACT-G questionnaire
Introduction Patients with cancer frequently suffer from emotional distress, characterized by psychological symptoms such as anxiety or depression. The presence of psychological symptoms combined with the complex nature of oncology processes can negatively impact patients' quality of life. We aimed to determine the impact of a relaxation protocol on improving quality of life in a sample of oncological patients treated in the Spanish National Public Health System. Materials and methods We conducted a multicenter interventional study without a control group. In total, 272 patients with different oncologic pathologies and showing symptoms of anxiety were recruited from 10 Spanish public hospitals. The intervention comprised abbreviated progressive muscle relaxation training, according to Bernstein and Borkovec. This was followed by weekly telephone calls to each patient over a 1-month period. We collected sociodemographic variables related to the disease process, including information about mental health and the intervention. Patients' quality of life was assessed using the Functional Assessment of Cancer Therapy-General (FACT-G) questionnaire. Bivariate and univariate analyses were performed, along with an analysis of multiple correspondences to identify subgroups of patients with similar variations on the FACT-G. Results Patients showed statistically significant improvements on the FACT-G overall score (W = 16806; p<0.001), with an initial mean score of 55.33±10.42 and a final mean score of 64.49±7.70. We also found significant improvements for all subscales: emotional wellbeing (W = 13118; p<0.001), functional wellbeing (W = 16155.5; p<0.001), physical wellbeing (W = 8885.5; p<0.001), and social and family context (W = ?1840; p = 0.037). Conclusions Patients with cancer who learned and practiced abbreviated progressive muscle relaxation experienced improvement in their perceived quality of life as measured by the FACT-G. Our findings support a previous assumption that complementary techniques (including relaxation techniques) are effective in improving the quality of life of patients with cancer
A global compilation of coccolithophore calcification rates
The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765CP measurements, the majority of which were measured using 12 to 24h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( < 20m) ranged from 0.01 to 8398µmolCm−3d−1 (with a geometric mean of 16.1µmolCm−3d−1). An integral value for the upper euphotic zone (herein surface to the depth of 1% surface irradiance) ranged from < 0.1 to 6mmolCm−2d−1 (geometric mean 1.19mmolCm−2d−1). The full database is available for download from PANGAEA at https://doi.org/10.1594/PANGAEA.888182
agr-Mediated Dispersal of Staphylococcus aureus Biofilms
The agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). Recent studies have suggested a role for the agr system in S. aureus biofilm development, as agr mutants exhibit a high propensity to form biofilms, and cells dispersing from a biofilm have been observed displaying an active agr system. Here, we report that repression of agr is necessary to form a biofilm and that reactivation of agr in established biofilms through AIP addition or glucose depletion triggers detachment. Inhibitory AIP molecules did not induce detachment and an agr mutant was non-responsive, indicating a dependence on a functional, active agr system for dispersal. Biofilm detachment occurred in multiple S. aureus strains possessing divergent agr systems, suggesting it is a general S. aureus phenomenon. Importantly, detachment also restored sensitivity of the dispersed cells to the antibiotic rifampicin. Proteinase K inhibited biofilm formation and dispersed established biofilms, suggesting agr-mediated detachment occurred in an ica-independent manner. Consistent with a protease-mediated mechanism, increased levels of serine proteases were detected in detaching biofilm effluents, and the serine protease inhibitor PMSF reduced the degree of agr-mediated detachment. Through genetic analysis, a double mutant in the agr-regulated Aur metalloprotease and the SplABCDEF serine proteases displayed minimal extracellular protease activity, improved biofilm formation, and a strongly attenuated detachment phenotype. These findings indicate that induction of the agr system in established S. aureus biofilms detaches cells and demonstrate that the dispersal mechanism requires extracellular protease activity
Depauperate Avifauna in Plantations Compared to Forests and Exurban Areas
Native forests are shrinking worldwide, causing a loss of biological diversity. Our ability to prioritize forest conservation actions is hampered by a lack of information about the relative impacts of different types of forest loss on biodiversity. In particular, we lack rigorous comparisons of the effects of clearing forests for tree plantations and for human settlements, two leading causes of deforestation worldwide. We compared avian diversity in forests, plantations and exurban areas on the Cumberland Plateau, USA, an area of global importance for biodiversity. By combining field surveys with digital habitat databases, and then analyzing diversity at multiple scales, we found that plantations had lower diversity and fewer conservation priority species than did other habitats. Exurban areas had higher diversity than did native forests, but native forests outscored exurban areas for some measures of conservation priority. Overall therefore, pine plantations had impoverished avian communities relative to both native forests and to exurban areas. Thus, reports on the status of forests give misleading signals about biological diversity when they include plantations in their estimates of forest cover but exclude forested areas in which humans live. Likewise, forest conservation programs should downgrade incentives for plantations and should include settled areas within their purview
Role of C/EBPβ Transcription Factor in Adult Hippocampal Neurogenesis
[Background]: The dentate gyrus of the hippocampus is one of the regions in which neurogenesis takes place in the adult brain. We have previously demonstrated that CCAAT/enhancer binding protein β (C/EBPβ) is expressed in the granular layer of the dentate gyrus of the adult mouse hippocampus. Taking into account the important role of C/EBPβ in the consolidation of long term memory, the fact that newborn neurons in the hippocampus contribute to learning and memory processes, and the role of this transcription factor, previously demonstrated by our group, in regulating neuronal differentiation, we speculated that this transcription factor could regulate stem/progenitor cells in this region of the brain.
[Methodologu/Principal Findings]: Here, we show, using C/EBPβ knockout mice, that C/EBPβ expression is observed in the subset of newborn cells that proliferate in the hippocampus of the adult brain. Mice lacking C/EBPβ present reduced survival of newborn cells in the hippocampus, a decrease in the number of these cells that differentiate into neurons and a diminished number of cells that are proliferating in the subgranular zone of the dentate gyrus. These results were further confirmed in vitro. Neurosphere cultures from adult mice deficient in C/EBPβ present less proliferation and neuronal differentiation than neurospheres derived from wild type mice.
[Conclusions/Significance]: In summary, using in vivo and in vitro strategies, we have identified C/EBPβ as a key player in the proliferation and survival of the new neurons produced in the adult mouse hippocampus. Our results support a novel role of C/EBPβ in the processes of adult hippocampal neurogenesis, providing new insights into the mechanisms that control neurogenesis in this region of the brain.This work was supported by a postdoctoral fellowship of the Consejo Superior de Investigaciones Cientificas (M.C.-C.) Grant Sponsor: Ministerio de Investigación y Ciencia; Grant numbers: SAF2007-62811 and SAF2010-16365. CIBERNED is funded by the Instituto de Salud Carlos III.Peer reviewe
- …