1,049 research outputs found
Supernova 2007bi as a pair-instability explosion
Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse
progressively heavier elements in their centres, up to inert iron. The core
then gravitationally collapses to a neutron star or a black hole, leading to an
explosion -- an iron-core-collapse supernova (SN). In contrast, extremely
massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores
which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at
relatively low densities. Conversion of energetic, pressure-supporting photons
into electron-positron pairs occurs prior to oxygen ignition, and leads to a
violent contraction that triggers a catastrophic nuclear explosion. Tremendous
energies (>~ 10^{52} erg) are released, completely unbinding the star in a
pair-instability SN (PISN), with no compact remnant. Transitional objects with
100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse
supernovae following violent mass ejections, perhaps due to short instances of
the pair instability, may have been identified. However, genuine PISNe, perhaps
common in the early Universe, have not been observed to date. Here, we present
our discovery of SN 2007bi, a luminous, slowly evolving supernova located
within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding
core mass to be likely ~100 M_{solar}, in which case theory unambiguously
predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were
synthesized, and that our observations are well fit by PISN models. A PISN
explosion in the local Universe indicates that nearby dwarf galaxies probably
host extremely massive stars, above the apparent Galactic limit, perhaps
resulting from star formation processes similar to those that created the first
stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009),
including all supplementary informatio
Solar-type dynamo behaviour in fully convective stars without a tachocline
In solar-type stars (with radiative cores and convective envelopes), the
magnetic field powers star spots, flares and other solar phenomena, as well as
chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The
dynamo responsible for generating the field depends on the shearing of internal
magnetic fields by differential rotation. The shearing has long been thought to
take place in a boundary layer known as the tachocline between the radiative
core and the convective envelope. Fully convective stars do not have a
tachocline and their dynamo mechanism is expected to be very different,
although its exact form and physical dependencies are not known. Here we report
observations of four fully convective stars whose X-ray emission correlates
with their rotation periods in the same way as in Sun-like stars. As the X-ray
activity - rotation relationship is a well-established proxy for the behaviour
of the magnetic dynamo, these results imply that fully convective stars also
operate a solar-type dynamo. The lack of a tachocline in fully convective stars
therefore suggests that this is not a critical ingredient in the solar dynamo
and supports models in which the dynamo originates throughout the convection
zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016).
Author's version, including Method
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
DNA topoisomerases participate in fragility of the oncogene RET
Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication
The second data release of the INT Photometric Ha Survey of the Northern Galactic Plane (IPHAS DR2)
The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800 deg2 imaging survey covering Galactic latitudes |b| < 5° and longitudes ℓ = 30°–215° in the r, i, and Hα filters using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92 per cent of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec pixel−1) and to a mean 5σ depth of 21.2 (r), 20.0 (i), and 20.3 (Hα) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (root mean square) and recommend a series of quality criteria to select accurate data from the catalogue. Finally, we demonstrate the ability of the catalogue's unique (r − Hα, r − i) diagram to (i) characterize stellar populations and extinction regimes towards different Galactic sightlines and (ii) select and quantify Hα emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys
Astrobiological Complexity with Probabilistic Cellular Automata
Search for extraterrestrial life and intelligence constitutes one of the
major endeavors in science, but has yet been quantitatively modeled only rarely
and in a cursory and superficial fashion. We argue that probabilistic cellular
automata (PCA) represent the best quantitative framework for modeling
astrobiological history of the Milky Way and its Galactic Habitable Zone. The
relevant astrobiological parameters are to be modeled as the elements of the
input probability matrix for the PCA kernel. With the underlying simplicity of
the cellular automata constructs, this approach enables a quick analysis of
large and ambiguous input parameters' space. We perform a simple clustering
analysis of typical astrobiological histories and discuss the relevant boundary
conditions of practical importance for planning and guiding actual empirical
astrobiological and SETI projects. In addition to showing how the present
framework is adaptable to more complex situations and updated observational
databases from current and near-future space missions, we demonstrate how
numerical results could offer a cautious rationale for continuation of
practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo
Radio Emission from Ultra-Cool Dwarfs
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very
low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed
that these objects can generate and dissipate powerful magnetic fields. Radio
observations provide unparalleled insight into UCD magnetism: detections extend
to brown dwarfs with temperatures <1000 K, where no other observational probes
are effective. The data reveal that UCDs can generate strong (kG) fields,
sometimes with a stable dipolar structure; that they can produce and retain
nonthermal plasmas with electron acceleration extending to MeV energies; and
that they can drive auroral current systems resulting in significant
atmospheric energy deposition and powerful, coherent radio bursts. Still to be
understood are the underlying dynamo processes, the precise means by which
particles are accelerated around these objects, the observed diversity of
magnetic phenomenologies, and how all of these factors change as the mass of
the central object approaches that of Jupiter. The answers to these questions
are doubly important because UCDs are both potential exoplanet hosts, as in the
TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans
J. Deeg and Juan Antonio Belmonte (Springer-Verlag
Homo sapiens in Arabia by 85,000 years ago
Understanding the timing and character of Homo sapiens expansion out of Africa is critical for inferring the colonisation and admixture processes that underpin global population history. It has been argued that dispersal out of Africa had an early phase, particularly ~130-90 thousand years ago (ka), that only reached the East Mediterranean Levant, and a later phase, ~60-50 ka, that extended across the diverse environments of Eurasia to Sahul. However, recent findings from East Asia and Sahul challenge this model. Here we show that H. sapiens was in the Arabian Peninsula before 85 ka. We describe the Al Wusta-1 (AW-1) intermediate phalanx from the site of Al Wusta in the Nefud Desert, Saudi Arabia. AW-1 is the oldest directly dated fossil of our species outside Africa and the Levant. The palaeoenvironmental context of Al Wusta demonstrates that H. sapiens using Middle Palaeolithic stone tools dispersed into Arabia during a phase of increased precipitation driven by orbital forcing, in association with a primarily African fauna. A Bayesian model incorporating independent chronometric age estimates indicates a chronology for Al Wusta of ~95-86 ka, which we correlate with a humid episode in the later part of Marine Isotope Stage 5 known from various regional records. Al Wusta shows that early dispersals were more spatially and temporally extensive than previously thought. Early H. sapiens dispersals out of Africa were not limited to winter rainfall-fed Levantine Mediterranean woodlands immediately adjacent to Africa, but extended deep into the semi-arid grasslands of Arabia, facilitated by periods of enhanced monsoonal rainfall
Observational and Physical Classification of Supernovae
This chapter describes the current classification scheme of supernovae (SNe).
This scheme has evolved over many decades and now includes numerous SN Types
and sub-types. Many of these are universally recognized, while there are
controversies regarding the definitions, membership and even the names of some
sub-classes; we will try to review here the commonly-used nomenclature, noting
the main variants when possible. SN Types are defined according to
observational properties; mostly visible-light spectra near maximum light, as
well as according to their photometric properties. However, a long-term goal of
SN classification is to associate observationally-defined classes with specific
physical explosive phenomena. We show here that this aspiration is now finally
coming to fruition, and we establish the SN classification scheme upon direct
observational evidence connecting SN groups with specific progenitor stars.
Observationally, the broad class of Type II SNe contains objects showing strong
spectroscopic signatures of hydrogen, while objects lacking such signatures are
of Type I, which is further divided to numerous subclasses. Recently a class of
super-luminous SNe (SLSNe, typically 10 times more luminous than standard
events) has been identified, and it is discussed. We end this chapter by
briefly describing a proposed alternative classification scheme that is
inspired by the stellar classification system. This system presents our
emerging physical understanding of SN explosions, while clearly separating
robust observational properties from physical inferences that can be debated.
This new system is quantitative, and naturally deals with events distributed
along a continuum, rather than being strictly divided into discrete classes.
Thus, it may be more suitable to the coming era where SN numbers will quickly
expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most
welcom
A rapid and sensitive system for recovery of nucleic acids from Mycobacteria sp. on archived glass slides
The field of diagnostics continues to advance rapidly with a variety of novel approaches, mainly dependent upon high technology platforms. Nonetheless much diagnosis, particularly in developing countries, still relies upon traditional methods such as microscopy. Biological material, particularly nucleic acids, on archived glass slides is a potential source of useful information both for diagnostic and epidemiological purposes. There are significant challenges faced when examining archived samples in order that an adequate amount of amplifiable DNA can be obtained. Herein, we describe a model system to detect low numbers of bacterial cells isolated from glass slides using (laser capture microscopy) LCM coupled with PCR amplification of a suitable target. Mycobacterium smegmatis was used as a model organism to provide a proof of principle for a method to recover bacteria from a stained sample on a glass slide using a laser capture system. Ziehl-Neelsen (ZN) stained cells were excised and catapulted into tubes. Recovered cells were subjected to DNA extraction and pre-amplified with multiple displacement amplification (MDA). This system allowed a minimum of 30 catapulted cells to be detected following a nested real-time PCR assay, using rpoB specific primers. The combination of MDA and nested real-time PCR resulted in a 30-fold increase in sensitivity for the detection of low numbers of cells isolated using LCM. This study highlights the potential of LCM coupled with MDA as a tool to improve the recovery of amplifiable nucleic acids from archived glass slides. The inclusion of the MDA step was essential to enable downstream amplification. This platform should be broadly applicable to a variety of diagnostic applications and we have used it as a proof of principle with a Mycobacterium sp. model system
- …
