267 research outputs found
Assessing the Effect of Seasonal Agriculture on the Condition and Winter Survival of a Migratory Songbird in Mexico
Migratory birds can spend 8 months of the year on their wintering grounds and the conversion of natural habitats to agriculture in Latin America has been implicated in population declines of several Neotropical migrants. Despite this, few studies have directly assessed the value of agricultural habitat for wintering migrants. We compared the condition and survival of Yellow Warblers (Setophaga petechia) occupying natural (riparian forest, scrub‐mangrove) and agricultural habitat (annually cropped sorghum, corn, and chili‐peppers separated by hedgerow) in western Mexico. We assessed condition with five metrics (daily and seasonal changes in size‐adjusted body mass, leukocyte profiles, rectrix regrowth rate, rectrix quality, and dates of departure on spring migration). We used Cormack–Jolly–Seber models fitted to mark‐resighting data collected over 4 years (2012–2015) to estimate January–May monthly survival rates. We found that birds occupying agricultural habitat and riparian forest had higher monthly apparent survival between January and May than birds in scrub‐mangrove. Birds in agricultural habitat also grew higher quality feathers (i.e., rectrices with a higher barbule density) than those in natural habitat. In contrast, birds in agricultural habitat were lighter than those in riparian habitat. We found no detectable effect of winter habitat use on daily or season changes in size‐adjusted mass and H/L ratios, although the effect of winter habitat use on departure rates differed for males and females. Our results demonstrate that agricultural habitat may provide suitable winter habitat for a long‐distance migrant and suggest that feather quality can be an indicator of winter habitat quality
Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma
Mutations in the ALK tyrosine kinase receptor gene represent important therapeutic targets in neuroblastoma, yet their clinical translation has been challenging. The ALKF1174L mutation is sensitive to the ALK inhibitor crizotinib only at high doses and mediates acquired resistance to crizotinib in ALK-translocated cancers. We have shown that the combination of crizotinib and an inhibitor of downstream signaling induces a favorable response in transgenic mice bearing ALKF1174L/MYCN-positive neuroblastoma. Here, we investigated the molecular basis of this effect and assessed whether a similar strategy would be effective in ALK-mutated tumors lacking MYCN overexpression. We show that in ALK-mutated, MYCN-amplified neuroblastoma cells, crizotinib alone does not affect mTORC1 activity as indicated by persistent RPS6 phosphorylation. Combined treatment with crizotinib and an ATP-competitive mTOR inhibitor abrogated RPS6 phosphorylation, leading to reduced tumor growth and prolonged survival in ALKF1174L/MYCN-positive models compared to single agent treatment. By contrast, this combination, while inducing mTORC1 downregulation, caused reciprocal upregulation of PI3K activity in ALK-mutated cells expressing wild-type MYCN. Here, an inhibitor with potency against both mTOR and PI3K was more effective in promoting cytotoxicity when combined with crizotinib. Our findings should enable a more precise selection of molecularly targeted agents for patients with ALK-mutated tumors
Cancer Gene Therapy Using Plasmid DNA: Pharmacokinetic Study of DNA Following Injection in Mice
Overview summary The present study evaluates the pharmacokinetic half-life and tissue distribution of plasmid DNA following intravenous injection in mice. This study extends the time frame of previous in vivo analyses to 6 months following i.v. injection. Injected mice exhibit no expression of the encoded gene as assayed by immunofluorescence. This represents the first systematic in vivo pharmacokinetic study of intravenously injected DNA complexed with cationic lipids, and is relevant to many gene therapy protocols utilizing direct injection of plasmid DNA plus lipids. The results provide a preliminary basis for the safe initiation of cancer immunotherapy clinical trials in which plasmid DNA is directly injected into tumors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63149/1/hum.1995.6.5-553.pd
Mitochondrial plasticity supports proliferative outgrowth and invasion of ovarian cancer spheroids during adhesion
BackgroundOvarian cancer cells aggregate during or after exfoliation from the primary tumor to form threedimensional spheroids. Spheroid formation provides a survival advantage during peritoneal dissemination in nutrient and oxygen-depleted conditions which is accompanied by a suppressed metabolic phenotype and fragmented mitochondria. Upon arrival to their metastatic sites, spheroids adhere to peritoneal organs and transition to a more epithelial phenotype to support outgrowth and invasion. In this study, we investigated the plasticity of mitochondrial morphology, dynamics, and function upon adhesion.MethodsUsing our slow-developing (MOSE-L) and fast-developing (MOSE-LTICv) ovarian cancer models, we mimicked adhesion and reoxygenation conditions by plating the spheroids onto tissue culture dishes and changing culture conditions from hypoxia and low glucose to normoxia with high glucose levels after adhesion. We used Western Blot, microscopy and Seahorse analyses to determine the plasticity of mitochondrial morphology and functions upon adhesion, and the impact on proliferation and invasion capacities.ResultsIndependent of culture conditions, all spheroids adhered to and began to grow onto the culture plates. While the bulk of the spheroid was unresponsive, the mitochondrial morphology in the outgrowing cells was indistinguishable from cells growing in monolayers, indicating that mitochondrial fragmentation in spheroids was indeed reversible. This was accompanied by an increase in regulators of mitobiogenesis, PGC1a, mitochondrial mass, and respiration. Reoxygenation increased migration and invasion in both cell types but only the MOSE-L responded with increased proliferation to reoxygenation. The highly aggressive phenotype of the MOSE-LTICv was characterized by a relative independence of oxygen and the preservation of higher levels of proliferation, migration and invasion even in limiting culture conditions but a higher reliance on mitophagy. Further, the outgrowth in these aggressive cells relies mostly on proliferation while the MOSE-L cells both utilize proliferation and migration to achieve outgrowth. Suppression of proliferation with cycloheximide impeded aggregation, reduced outgrowth and invasion via repression of MMP2 expression and the flattening of the spheroids.DiscussionOur studies indicate that the fragmentation of the mitochondria is reversible upon adhesion. The identification of regulatory signaling molecules and pathways of these key phenotypic alterations that occur during primary adhesion and invasion is critical for the identification of druggable targets for therapeutic intervention to prevent aggressive metastatic disease
The Fast, Luminous Ultraviolet Transient AT2018cow: Extreme Supernova, or Disruption of a Star by an Intermediate-Mass Black Hole?
Wide-field optical surveys have begun to uncover large samples of fast (t_(rise) ≲ 5 d), luminous (M_(peak) 10 days. The spectrum remains extremely hot throughout its evolution, and the photospheric radius contracts with time (receding below R < 10^(14) cm after 1 month). This behaviour does not match that of any known supernova, although a relativistic jet within a fallback supernova could explain some of the observed features. Alternatively, the transient could originate from the disruption of a star by an intermediate-mass black hole, although this would require long-lasting emission of highly super-Eddington thermal radiation. In either case, AT 2018cow suggests that the population of fast luminous transients represents a new class of astrophysical event. Intensive follow-up of this event in its late phases, and of any future events found at comparable distance, will be essential to better constrain their origins
Multivariate Computational Analysis of Gamma Delta T Cell Inhibitory Receptor Signatures Reveals the Divergence of Healthy and ART-Suppressed HIV+ Aging
Even with effective viral control, HIV-infected individuals are at a higher risk for morbidities associated with older age than the general population, and these serious non-AIDS events (SNAEs) track with plasma inflammatory and coagulation markers. The cell subsets driving inflammation in aviremic HIV infection are not yet elucidated. Also, whether ART-suppressed HIV infection causes premature induction of the inflammatory events found in uninfected elderly or if a novel inflammatory network ensues when HIV and older age co-exist is unclear. In this study we measured combinational expression of five inhibitory receptors (IRs) on seven immune cell subsets and 16 plasma markers from peripheral blood mononuclear cells (PBMC) and plasma samples, respectively, from a HIV and Aging cohort comprised of ART-suppressed HIV-infected and uninfected controls stratified by age (≤35 or ≥50 years old). For data analysis, multiple multivariate computational algorithms [cluster identification, characterization, and regression (CITRUS), partial least squares regression (PLSR), and partial least squares-discriminant analysis (PLS-DA)] were used to determine if immune parameter disparities can distinguish the subject groups and to investigate if there is a cross-impact of aviremic HIV and age on immune signatures. IR expression on gamma delta (γδ) T cells exclusively separated HIV+ subjects from controls in CITRUS analyses and secretion of inflammatory cytokines and cytotoxic mediators from γδ T cells tracked with TIGIT expression among HIV+ subjects. Also, plasma markers predicted the percentages of TIGIT+ γδ T cells in subjects with and without HIV in PSLR models, and a PLS-DA model of γδ T cell IR signatures and plasma markers significantly stratified all four of the subject groups (uninfected younger, uninfected older, HIV+ younger, and HIV+ older). These data implicate γδ T cells as an inflammatory driver in ART-suppressed HIV infection and provide evidence of distinct “inflamm-aging” processes with and without ART-suppressed HIV infection
Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes.
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we report for the first time the use of first trimester placental organ cultures to quantitatively analyze L. monocytogenes infection of the human placenta. Contrary to previous reports, we found that the syncytiotrophoblast, which constitutes most of the placental surface and is bathed in maternal blood, was highly resistant to L. monocytogenes infection by either internalin-mediated invasion or cell-to-cell spread. Instead, extravillous cytotrophoblasts-which anchor the placenta in the decidua (uterine lining) and abundantly express E-cadherin-served as the primary portal of entry for L. monocytogenes from both extracellular and intracellular compartments. Subsequent bacterial dissemination to the villous stroma, where fetal capillaries are found, was hampered by further cellular and histological barriers. Our study suggests the placenta has evolved multiple mechanisms to resist pathogen infection, especially from maternal blood. These findings provide a novel explanation why almost all placental pathogens have intracellular life cycles: they may need maternal cells to reach the decidua and infect the placenta
Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia: Design of the ADvance Randomized Controlled Trial
Background: There are currently few available treatments and no cure for Alzheimer disease (AD), a growing public health burden. Animal models and an open-label human trial have indicated that deep brain stimulation (DBS) of memory circuits may improve symptoms and possibly slow disease progression. The ADvance trial was designed to examine DBS of the fornix as a treatment for mild AD. Methods: ADvance is a randomized, double-blind, placebo-controlled, delayed-start, multicenter clinical trial conducted at six sites in the US and one site in Canada. Eighty-five subjects initially consented to be screened for the trial. Of these, 42 subjects who met inclusion and exclusion criteria were implanted with DBS leads anterior to the columns of the fornix bilaterally. They were randomized 1:1 to DBS off or DBS on groups for the initial 12 months of follow-up. After 1 year, all subjects will have their devices turned on for the remainder of the study. Postimplantation, subjects will return for 13 follow-up visits over 48 months for cognitive and psychiatric assessments, brain imaging (up to 12 months), and safety monitoring. The primary outcome measures include Alzheimer\u27s Disease Assessment Scale -- cognitive component (ADAS-cog-13), Clinical Dementia Rating sum of boxes (CDR-SB), and cerebral glucose metabolism measured with positron emission tomography. This report details the study methods, baseline subject characteristics of screened and implanted participants, and screen-to-baseline test€“retest reliability of the cognitive outcomes. Results: Implanted subjects had a mean age of 68.2 years, were mostly male (55%), and had baseline mean ADAS-cog-13 and CDR-SB scores of 28.9 (SD, 5.2) and 3.9 (SD, 1.6), respectively. There were no significant differences between screened and implanted or nonimplanted subjects on most demographic or clinical assessments. Implanted subjects had significantly lower (better) ADAS-cog-11 (17.5 vs 21.1) scores, but did not differ on CDR-SB. Scores on the major outcome measures for the trial were consistent at screening and baseline. Conclusion: ADvance was successful in enrolling a substantial group of patients for this novel application of DBS, and the study design is strengthened by rigorous subject selection from seven sites, a double-blind placebo-controlled design, and extensive open-label follow-up
The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars
We present measurements of black hole masses and Eddington ratios for a
sample of 38 bright (M < -24.4 mag) quasars at 5.8 < z < 7.5, derived
from VLT/X-shooter near-IR spectroscopy of their broad CIV and MgII emission
lines. The black hole masses (on average M ~ 4.6 x 10 M)
and accretion rates (with Eddington ratios ranging between 0.1 and 1.0) are
broadly consistent with that of similarly luminous 0.3 < z < 2.3 quasars, but
there is evidence for a mild increase in the median Eddington ratio going
towards z > 6. Combined with deep ALMA observations of the [CII] 158 m
line from the quasar host galaxies and VLT/MUSE investigations of the extended
Ly halos, this study provides fundamental clues to models of the
formation and growth of the first massive galaxies and black holes. Compared to
local scaling relations, z > 5.7 black holes appear to be over-massive with
respect to their host galaxies, and their accretion properties do not change
with host galaxy morphology. Under the assumption that the kinematics of the T
~ 10 K gas, traced by the extended Ly halos, are dominated by the
gravitational potential of the dark matter halo, we report a similar relation
between the black hole mass and circular velocity to the one reported for z ~ 0
galaxies. These results paint a picture where the first supermassive black
holes reside in massive halos at z > 6 and lead the first stages of galaxy
formation by rapidly growing in mass with a duty cycle of order unity. However,
this duty cycle needs to drastically drop towards lower redshifts, while the
host galaxies continue forming stars at a rate of hundreds of solar masses per
year, sustained by the large reservoirs of cool gas surrounding them.Comment: Accepted for publication on AAS journals. 24 pages + appendices, 15
figures, 5 tables (including full list of z>5.7 quasars with MgII based black
hole mass estimates). For access to the data and codes used in this work,
please contact the author
- …