394 research outputs found

    Synthesis and Catalytic Performance of Ni/SiO 2

    Get PDF
    A series of Ni/SiO2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF

    Synthesis and Catalytic Performance of Ni/SiO 2 for Hydrogenation of 2-Methylfuran to 2-Methyltetrahydrofuran

    Get PDF
    A series of Ni/SiO 2 catalysts with different Ni content were prepared by sol-gel method for application in the synthesis of 2-methyltetrahydrofuran (2-MTHF) by hydrogenation of 2-methylfuran (2-MF). The catalyst structure was investigated by Xray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature programmed reduction (TPR). It is found that structures and catalytic performance of the catalysts were highly affected by the Ni content. The catalyst with a 25% Ni content had an appropriate size of the Ni species and larger BET surface area and produced a higher 2-MF conversion with enhanced selectivity in 2-MTHF

    Enhanced cytotoxicity of silver complexes bearing bidentate N-heterocyclic carbene ligands

    Get PDF
    A diverse library of cationic silver complexes bearing bis(N-heterocyclic carbene) ligands have been prepared which exhibit cytotoxicity comparable to cisplatin against the adenocarcinomas MCF7 and DLD1. Bidentate ligands show enhanced cytotoxicity over monodentate and macrocyclic ligands

    One-pot Synthesis of Octyne-Ruthenium on Carbon Nanoparticles

    Full text link
    The attempts to manipulate ruthenium nanoparticle by the passivation of π bonds linkage is of interest for many years. That is the way to enhance its optical properties and fluorescence characteristics which can promote the usage for sensor application. Other view, the usage of carbon nanoparticle is governed in many aspects including its fluorescence properties. Therefore, the combination between those two valued nanoparticles was set by conducting the simple synthesis method. With the as-prepared carbon nanoparticles, all other reagents (ruthenium (III) chloride, octyne and Sodium borohydride) were mixed in the same batch. The ratio of carbon substrate, ruthenium (III) chloride and octyne was 10: 1: 3. The particle yielded was then purified and subjected to characterize using some spectroscopy techniques including photoluminescence. The results showed that size of carbon particle before and after ruthenium deposition were 5.0 and 6.3 nanometers, respectively. Octyne was coordinated self-assembly on the ruthenium surface which was 8.1 nanometers in diameter. Moreover, octyne-protected ruthenium on carbon nanoparticles showed the remarkably increasing of fluorescence Intensity. Therefore, the functionalization of carbon nanoparticle with octyne-ruthenium can be a promising strategy to develop a novel complex of ruthenium

    Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates

    Get PDF
    NOTICE: This is the peer reviewed version of the following book chapter: Varela J. A., González-Rodríguez C., Saá C. (2014). Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates. In: Dixneuf P., Bruneau C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48, pp. 237-287. Springer, Cham. [doi: 10.1007/3418_2014_81]. This article may be used for non-commercial purposes in accordance with Springer Verlag Terms and Conditions for self-archiving.Vinylidenes are high-energy tautomers of terminal alkynes and they can be stabilized by coordination with transition metals. The resulting metal-vinylidene species have interesting chemical properties that make their reactivity different to that of the free and metal π-coordinated alkynes: the carbon α to the metal is electrophilic whereas the β carbon is nucleophilic. Ruthenium is one of the most commonly used transition metals to stabilize vinylidenes and the resulting species can undergo a range of useful transformations. The most remarkable transformations are the regioselective anti-Markovnikov addition of different nucleophiles to catalytic ruthenium vinylidenes and the participation of the π system of catalytic ruthenium vinylidenes in pericyclic reactions. Ruthenium vinylidenes have also been employed as precatalysts in ring closing metathesis (RCM) or ring opening metathesis polymerization (ROMP). Allenylidenes could be considered as divalent radicals derived from allenes. In a similar way to vinylidenes, allenylidenes can be stabilized by coordination with transition metals and again ruthenium is one of the most widely used metals. Metalallenylidene complexes can be easily obtained from terminal propargylic alcohols by dehydration of the initially formed metal-hydroxyvinylidenes, in which the reactivity of these metal complexes is based on the electrophilic nature of Cα and Cγ, while Cβ is nucleophilic. Catalytic processes based on nucleophilic additions and pericyclic reactions involving the π system of ruthenium allenylidenes afford interesting new structures with high selectivity and atom economy
    • …
    corecore