22 research outputs found

    Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate

    Get PDF
    The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes

    Brown Spider (Loxosceles genus) Venom Toxins: Tools for Biological Purposes

    Get PDF
    Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus) venom is enriched in low molecular mass proteins (5–40 kDa). Although their venom is produced in minute volumes (a few microliters), and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins

    fslE Is Necessary for Siderophore-Mediated Iron Acquisition in Francisella tularensis Schu S4β–Ώ

    No full text
    Strains of Francisella tularensis secrete a siderophore in response to iron limitation. Siderophore production is dependent on fslA, the first gene in an operon that appears to encode biosynthetic and export functions for the siderophore. Transcription of the operon is induced under conditions of iron limitation. The fsl genes lie adjacent to the fur homolog on the chromosome, and there is a canonical Fur box sequence in the promoter region of fslA. We generated a Ξ”fur mutant of the Schu S4 strain of F. tularensis tularensis and determined that siderophore production was now constitutive and no longer regulated by iron levels. Quantitative reverse transcriptase PCR analysis with RNA from Schu S4 and the mutant strain showed that Fur represses transcription of fslA under iron-replete conditions. We determined that fslE (locus FTT0025 in the Schu S4 genome), located downstream of the siderophore biosynthetic genes, is also under Fur regulation and is transcribed as part of the fslABCDEF operon. We generated a defined in-frame deletion of fslE and found that the mutant was defective for growth under iron limitation. Using a plate-based growth assay, we found that the mutant was able to secrete a siderophore but was defective in utilization of the siderophore. FslE belongs to a family of proteins that has no known homologs outside of the Francisella species, and the fslE gene product has been previously localized to the outer membrane of F. tularensis strains. Our data suggest that FslE may function as the siderophore receptor in F. tularensis

    Identification and Gene Expression Analysis of a Large Family of Transmembrane Kinases Related to the Gal/GalNAc Lectin in Entamoeba histolytica

    No full text
    We identified in the Entamoeba histolytica genome a family of over 80 putative transmembrane kinases (TMKs). The TMK extracellular domains had significant similarity to the intermediate subunit (Igl) of the parasite Gal/GalNAc lectin. The closest homolog to the E. histolytica TMK kinase domain was a cytoplasmic dual-specificity kinase, SplA, from Dictyostelium discoideum. Sequence analysis of the TMK family demonstrated similarities to both serine/threonine and tyrosine kinases. TMK genes from each of six phylogenetic groups were expressed as mRNA in trophozoites, as assessed by spotted oligoarray and real-time PCR assays, suggesting nonredundant functions of the TMK groups for sensing and responding to extracellular stimuli. Additionally, we observed changes in the expression profile of the TMKs in continuous culture. Antisera produced against the conserved kinase domain identified proteins of the expected molecular masses of the expressed TMKs. Confocal microscopy with anti-TMK kinase antibodies revealed a focal distribution of the TMKs on the cytoplasmic face of the trophozoite plasma membrane. We conclude that E. histolytica expresses members of each subgroup of TMKs. The presence of multiple receptor kinases in the plasma membrane offers for the first time a potential explanation of the ability of the parasite to respond to the changing environment of the host

    Generation of E3-deleted canine adenoviruses expressing canine parvovirus capsid by homologous recombination in bacteria

    No full text
    E3-deleted canine adenovirus type 1 (CAV-1) was generated by homologous recombination in bacterial cells, using an antibiotic resistance marker to facilitate the recovery of recombinants. This marker was flanked by unique restriction endonuclease sites, which allowed its subsequent removal and the insertion of cassettes expressing the canine parvovirus capsid at the E3 locus. Infectious virus was recovered following transfection of canine cells and capsid expression was observed by RT-PCR from one of the virus constructs. A second construct, containing a different promoter, showed delayed growth and genome instability which, based on the size difference between these inserts, suggests a maximum packaging size of 106 to 109% wild-type genome size for CAV-1
    corecore